大家還記得直線與圓的位置關(guān)系嗎?今天小編給大家?guī)?lái)的是九年級(jí)直線與圓的位置關(guān)系教學(xué)設(shè)計(jì)及教學(xué)反思,有興趣的小伙伴可以進(jìn)來(lái)看看,參考參考!
1、 教學(xué)目標(biāo)
知識(shí)目標(biāo):使學(xué)生從具體的事例中認(rèn)知和理解直線與圓的三種位置關(guān)系并能概括其定義,會(huì)用定義來(lái)判斷直線與圓的位置關(guān)系,通過(guò)類比點(diǎn)與圓的位置關(guān)系及觀察、實(shí)驗(yàn)等活動(dòng)探究直線與圓的位置關(guān)系的數(shù)量關(guān)系及其運(yùn)用。 過(guò)程與方法:通過(guò)觀察、實(shí)驗(yàn)、討論、合作研究等數(shù)學(xué)活動(dòng)使學(xué)生了解探索問(wèn)題的一般方法;由觀察得到“圓心與直線的距離和圓半徑大小的數(shù)量關(guān)系對(duì)應(yīng)等價(jià)于直線和圓的位置關(guān)系”從而實(shí)現(xiàn)位置關(guān)系與數(shù)量關(guān)系的轉(zhuǎn)化,滲透運(yùn)動(dòng)與轉(zhuǎn)化的數(shù)學(xué)思想。
情感態(tài)度與價(jià)值觀:創(chuàng)設(shè)問(wèn)題情景,激發(fā)學(xué)生好奇心;體驗(yàn)數(shù)學(xué)活動(dòng)中的探索與創(chuàng)造,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的正確性,在學(xué)習(xí)活動(dòng)中獲得成功的體驗(yàn);通過(guò)“轉(zhuǎn)化”數(shù)學(xué)思想的運(yùn)用,讓學(xué)生認(rèn)識(shí)到事物之間是普遍聯(lián)系、相互轉(zhuǎn)化的辨證唯物主義思想。
2、 教學(xué)重、難點(diǎn)
重點(diǎn):理解直線與圓的相交、相離、相切三種位置關(guān)系;
難點(diǎn):學(xué)生能根據(jù)圓心到直線的距離d與圓的半徑r之間的數(shù)量關(guān)系,揭示直線與圓的位置關(guān)系;直線與圓的三種位置關(guān)系判定方法的運(yùn)用。
3、教學(xué)過(guò)程:
教學(xué)環(huán)節(jié)
教學(xué)過(guò)程
學(xué)生活動(dòng)
設(shè)計(jì)意圖
(一)
創(chuàng)設(shè)情景,孕育新知,引入新課
1、微機(jī)演示唐朝詩(shī)人王維《使至塞上》:
單車欲問(wèn)邊,屬國(guó)過(guò)居延。
征蓬出漢塞,歸雁入胡天。
大漠孤煙直,長(zhǎng)河落日?qǐng)A。
蕭關(guān)逢候騎,都護(hù)在燕然。
第三句以出色的描寫,道出了邊塞之景的奇特壯麗和作者的孤寂之感。“荒蕪人煙的戈壁灘上只有烽火臺(tái)的濃煙直沖天空”,如果我們從數(shù)學(xué)的角度看到的將是這樣一幅幾何圖形:一條直線垂直于一個(gè)平面。那么“圓圓的落日慢慢地沉入黃河之中”又是怎樣的幾何圖形呢?請(qǐng)同學(xué)們猜想并動(dòng)手畫(huà)一畫(huà)。
1、 借助微機(jī)展示“圓圓的落日慢慢地沉入黃河之中”的動(dòng)畫(huà)圖片從而展現(xiàn)直線與圓的三種位置關(guān)系。
3、引入課題——直線與圓的位置關(guān)系
觀察思考,動(dòng)手探究,交流發(fā)現(xiàn)
通過(guò)直觀畫(huà)面展示問(wèn)題情景,學(xué)生大膽猜想,激發(fā)學(xué)生學(xué)習(xí)興趣,營(yíng)造探索問(wèn)題的氛圍。同時(shí)讓學(xué)生體會(huì)到數(shù)學(xué)知識(shí)無(wú)處不在,應(yīng)用數(shù)學(xué)無(wú)處不有。符合“數(shù)學(xué)教學(xué)應(yīng)從生活經(jīng)驗(yàn)出發(fā)”的新課程標(biāo)準(zhǔn)要求。
(二)
啟發(fā)誘導(dǎo)、講解新知,探索結(jié)論;
1、提出問(wèn)題(讓學(xué)生帶著問(wèn)題去學(xué)習(xí)):
(1)、概括直線與圓的有哪幾種位置關(guān)系,你是怎樣區(qū)分這幾種位置關(guān)系的?
(2)如何用語(yǔ)言描述三種位置關(guān)系?
(3)回顧點(diǎn)與圓的位置關(guān)系,你能不能探索圓心到直線的距離與圓的半徑之間的數(shù)量關(guān)系。(小組交流合作)
2、講解新知:利用直線與圓的交點(diǎn)情況,引導(dǎo)學(xué)生分析、小結(jié)三種位置關(guān)系:(1)直線與圓沒(méi)有交點(diǎn),稱為直線與圓相離
(2)直線與圓只有一個(gè)交點(diǎn),稱為直線與圓相切,此時(shí)這條直線叫做圓的切線,這個(gè)公共點(diǎn)叫切點(diǎn)。
(3)直線與圓有兩個(gè)交點(diǎn),稱為直線與圓相交。此時(shí)這條直線叫做圓的割線。
2、 大膽猜想,探索結(jié)論:
微機(jī)演示三個(gè)圖形,觀察圓心到直線的距離d與圓半徑r之間的大小關(guān)系。
(當(dāng)d?r時(shí),直線在圓的外部,與圓沒(méi)有交點(diǎn),因此此時(shí)直線與圓相離;
當(dāng)d=r時(shí),直線與圓只有一個(gè)交點(diǎn),此時(shí)直線與圓相切;
當(dāng)d?r時(shí),直線與圓有兩個(gè)交點(diǎn),此時(shí)直線與圓相交)
即:d?r 直線與圓相離
d=r 直線與圓相切
d?r 直線與圓相交
反之:若直線與圓相離,有d?r嗎?
若直線與圓相切,有d=r嗎?
若直線與圓相交,有d?r嗎?
總結(jié):
d?r 直線與圓相離
d=r 直線與圓相切
d?r 直線與圓相交
觀察、思考、猜測(cè)、概括
學(xué)生回答問(wèn)題,概括定義
學(xué)生觀察圖形,積極思考,歸納總結(jié),獲得直線與圓的位置關(guān)系的兩種判斷方法
通過(guò)學(xué)生概括定義,培養(yǎng)學(xué)生歸納概括能力。由點(diǎn)與圓的位置關(guān)系的性質(zhì)與判定,遷移到直線與圓的位置關(guān)系,學(xué)生較容易想到畫(huà)圖、測(cè)量等實(shí)驗(yàn)方法,小組交流合作,教師適時(shí)指導(dǎo),探索圓心到直線的距離與圓的半徑之間的數(shù)量關(guān)系。
在本環(huán)節(jié)中教師應(yīng)關(guān)注如下幾點(diǎn):1、學(xué)生是否有獨(dú)自的見(jiàn)解;2、學(xué)生能否理解“互逆”的關(guān)系。如有需要,教師應(yīng)在課中或課后加以解釋。
(三)
講練結(jié)合,應(yīng)用新知,鞏固新知
例1、 已知圓的直徑為10cm,圓心到直線l的距離是:(1)3cm ;(2)5cm ;(3)7cm。直線和圓有幾個(gè)公共點(diǎn)?為什么?
例2、 已知RtABC的斜AB=6cm,直角邊AC=3cm。圓心為A,半徑分別為2cm、4cm的兩個(gè)圓與直線BC有怎樣的位置關(guān)系?半徑r多長(zhǎng)時(shí),BC與A相切?
變式訓(xùn)練1、在上題中,“圓心為C,半徑分別為2cm、4cm的兩個(gè)圓與直線AB有怎樣的位置關(guān)系?半徑r多長(zhǎng)時(shí),直線AB與C相切?
變式訓(xùn)練2、在上題中,若將直線AB改為邊AB,C與邊AB相交,則圓半徑r應(yīng)取怎樣的值?
觀察分析,獨(dú)立完成,同桌點(diǎn)評(píng),自我修正
觀察分析
積極思考,
小組交流
合作
本環(huán)節(jié)的練習(xí)難度層層加大,其目的是讓學(xué)生加強(qiáng)對(duì)新知的理解和應(yīng)用,培養(yǎng)學(xué)生解決問(wèn)題的能力;基礎(chǔ)題目和變式題目的結(jié)合既面向全體學(xué)生,也考慮到了學(xué)有余力的學(xué)生的學(xué)習(xí),體現(xiàn)了因材施教的教學(xué)原則。
在本環(huán)節(jié)中,一定要充分教師的主導(dǎo)作用,發(fā)揮教學(xué)評(píng)價(jià)的激勵(lì)、調(diào)控功能。
(四)
知識(shí)拓展、深化提高
在某張航海圖上,標(biāo)明了三個(gè)觀測(cè)點(diǎn)的坐標(biāo),如圖,O(0,0),B(6,0),C(6,8),由三個(gè)觀測(cè)點(diǎn)確定的圓形區(qū)域是海洋生物保護(hù)區(qū)。
(1) 求 圓形區(qū)域的面積( 取3.14)
(2) 某時(shí)刻海面上出現(xiàn)一漁船A,在觀察點(diǎn)O測(cè)得A位于北偏東45 ,同時(shí)在觀測(cè)點(diǎn)B測(cè)得A位于北偏東30 ,那么當(dāng)漁船A向正西方向航行時(shí),是否會(huì)進(jìn)入海洋生物保護(hù)區(qū)?
分組討論,理解數(shù)學(xué)建模思想和轉(zhuǎn)化化歸思想。
這一階段是學(xué)生形成技能、技巧,發(fā)展智力的重要階段,但也是學(xué)生因疲勞而注意力易分散的時(shí)期。如果教師此時(shí)教學(xué)設(shè)計(jì)得當(dāng)、選題新穎,由于學(xué)生前面已嘗到成功的甜蜜,則會(huì)乘勝追擊,破解難題;否則學(xué)生會(huì)就此罷休,無(wú)法達(dá)到預(yù)期目的。同時(shí)向?qū)W生滲透數(shù)學(xué)建模思想和轉(zhuǎn)化化歸的數(shù)學(xué)思想,也適時(shí)進(jìn)行環(huán)保教育。
(五)
小結(jié)新知,畫(huà)龍點(diǎn)睛
一、填表:直線與圓的三種位置關(guān)系
直線與圓的位置
相交
相切
相離
公共點(diǎn)的個(gè)數(shù)
圓心到直線距離d與半徑r的關(guān)系
無(wú)
直線名稱
無(wú)
二、直線與圓的位置關(guān)系的兩種判斷方法:
1、 直線與圓的交點(diǎn)個(gè)數(shù)的多少
2、 圓心到直線距離d與半徑r的大小關(guān)系
學(xué)生回答,同時(shí)反思不足
通過(guò)提問(wèn)方式進(jìn)行小結(jié),交流收獲與不足,讓學(xué)生養(yǎng)成學(xué)習(xí)——總結(jié)——再學(xué)習(xí)的良好學(xué)習(xí)習(xí)慣,有利于幫助學(xué)生理清知識(shí)脈絡(luò),同時(shí)明確本節(jié)課的學(xué)習(xí)目標(biāo),鞏固學(xué)習(xí)效果。
教學(xué)反思:
(1) 本節(jié)課的設(shè)計(jì)體現(xiàn)了“學(xué)會(huì)學(xué)習(xí),為終身學(xué)習(xí)作準(zhǔn)備”的理念,讓學(xué)生在“數(shù)學(xué)活動(dòng)”中獲得學(xué)習(xí)的方法、能力和數(shù)學(xué)的思想,同時(shí)獲得對(duì)數(shù)學(xué)學(xué)習(xí)的積極情感。
(2) 教師是教學(xué)工作的服務(wù)者,教師的責(zé)任是為學(xué)生的發(fā)展創(chuàng)造一個(gè)和諧、開(kāi)放、富有情趣的學(xué)習(xí)新知識(shí)的探究氛圍。本課引用唐朝詩(shī)人王維的千古絕唱“大漠孤煙直,長(zhǎng)河落日?qǐng)A”配以美倫美奐的景色,營(yíng)造了探索問(wèn)題的氛圍;例題和提高練習(xí)的選用,讓學(xué)生體會(huì)到數(shù)學(xué)知識(shí)無(wú)處不在,應(yīng)用數(shù)學(xué)無(wú)處不有,讓學(xué)生感受到“生活處處不數(shù)學(xué)”,從而在生活中主動(dòng)發(fā)覺(jué)問(wèn)題加以解決,達(dá)到“樂(lè)學(xué)”的目的;把實(shí)際問(wèn)題與數(shù)學(xué)知識(shí)緊密聯(lián)系,逐步滲透數(shù)學(xué)建模的思想方法,讓學(xué)生掌握到更多的技能技巧。
(3) 課前設(shè)問(wèn),呈現(xiàn)本課知識(shí)目標(biāo)。課前的3個(gè)設(shè)問(wèn),直奔主題,學(xué)生對(duì)本課應(yīng)掌握的知識(shí)一目了然,重點(diǎn)分明。
(4) 變式訓(xùn)練,把學(xué)生置于創(chuàng)新思維的深入培養(yǎng)過(guò)程之中。眾所周知,實(shí)施素質(zhì)教育的突破口是創(chuàng)新教育,要培養(yǎng)學(xué)生的創(chuàng)新能力,就要有讓學(xué)生進(jìn)行創(chuàng)新思維的問(wèn)題,而變式訓(xùn)練就是讓學(xué)生展開(kāi)創(chuàng)新思維的主陣地。教師在教學(xué)活動(dòng)中應(yīng)努力的去挖掘教材,有意識(shí)的去訓(xùn)練學(xué)生的思維,從而使學(xué)生逐漸形成良好的個(gè)性思維品質(zhì)和良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣。
來(lái)源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問(wèn)題,請(qǐng)聯(lián)系我們及時(shí)刪除。