王牌对王牌第一季综艺,黄视频在线观看网站,世界一级毛片,成人黄色免费看

薈聚奇文、博采眾長、見賢思齊
當前位置:公文素材庫 > 計劃總結 > 工作總結 > 冀教版數(shù)學知識點總結(六上)

冀教版數(shù)學知識點總結(六上)

網(wǎng)站:公文素材庫 | 時間:2019-05-27 19:34:09 | 移動端:冀教版數(shù)學知識點總結(六上)

冀教版數(shù)學知識點總結(六上)

六年級數(shù)學上冊知識點總結

第一單元圓和扇形

一、圓的特征

1、圓是平面內封閉曲線圍成的平面圖形。2、圓的特征:外形美觀,易滾動。

3、圓心o:圓中心的點叫做圓心.圓心一般用字母O表示.圓多次對折之后,折痕的相交于圓的中心即圓心。圓心確定圓的位置。

半徑r:連接圓心到圓上任意一點的線段叫做半徑。在同一個圓里,有無數(shù)條半徑,且所有的半徑都相等。半徑確定圓的大小。

直徑d:通過圓心且兩端都在圓上的線段叫做直徑。在同一個圓里,有無數(shù)條直徑,且所有的直徑都相等。直徑是圓內最長的線段。

同圓或等圓內直徑是半徑的2倍:d=2r或r=d÷2

4、等圓:半徑相等的圓叫做等圓,等圓通過平移可以完全重合。同心圓:圓心重合、半徑不等的兩個圓叫做同心圓。

5、圓是軸對稱圖形:如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形是軸對稱圖形。折痕所在的直線叫做對稱軸。

有一條對稱軸的圖形:半圓、扇形、等腰梯形、等腰三角形、角有二條對稱軸的圖形:長方形

有三條對稱軸的圖形:等邊三角形有四條對稱軸的圖形:正方形有無條對稱軸的圖形:圓,圓環(huán)6、畫圓

(1)圓規(guī)兩腳間的距離是圓的半徑。

(2)畫圓步驟:定半徑、定圓心、旋轉一周。二、扇形

扇形是由兩條半徑和圓上的一段曲線圍成的。扇形都有一個角,角的頂點在圓心。

第二單元比和比例

一、比

1、比表示兩個數(shù)相除。兩個數(shù)相除的結果叫做比值。

2、比式中,比號(∶)前面的數(shù)叫前項,比號后面的項叫做后項,比號相當于除號,比的前項除以后項的商叫做比值。

注:連比如:3:4:5讀作:3比4比5

3、比表示的是兩個數(shù)的關系,可以用分數(shù)表示,寫成分數(shù)的形式,讀作幾比幾。例:12∶20=12÷20=0.612∶20讀作:12比20

4、區(qū)分比和比值:比值是一個數(shù),通常用分數(shù)表示,也可以是整數(shù)、小數(shù)。

比是一個式子,表示兩個數(shù)的關系,可以寫成比,也可以寫成分數(shù)的形式。

5、比的基本性質:比的前項和后項同時乘以或除以相同的數(shù)(0除外),比值不變。6、化簡比:化簡之后結果還是一個比,不是一個數(shù)?梢詫懗杀,也可以寫成分數(shù)的形式。

(1)、用比的前項和后項同時除以它們的最大公約數(shù)。

1/4

(2)、兩個分數(shù)的比,用前項后項同時乘分母的最小公倍數(shù),再按化簡整數(shù)比的方法來化簡。也可以求出比值再寫成比的形式。(3)、兩個小數(shù)的比,向右移動小數(shù)點的位置,也是先化成整數(shù)比。4、求比值:把比號寫成除號再計算,結果是一個數(shù)(或分數(shù)),相當于商,不是比。5、比和除法、分數(shù)的區(qū)別:除法被除數(shù)分數(shù)比分子前項除號(÷)分數(shù)線()比號(∶)除數(shù)(不能為0)分母(不能為0)后項(不能為0)商不變性質分數(shù)的基本性質比的基本性質除法是一種運算分數(shù)是一個數(shù)比表示兩個數(shù)的關系附:商不變性質:被除數(shù)和除數(shù)同時乘或除以相同的數(shù)(0除外),商不變。分數(shù)的基本性質:分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。二、比例表示兩個比相等的式子叫做比例。判斷兩個比能不能組成比例,要看它們的比值是不是相等。組成比例的四個數(shù),叫做比例的項。兩端的兩項叫做比例的外項,中間的兩項叫做比例的內項。在比例里,兩個外項的積等于兩個內項的積,這是比例的基本性質。如果把比例寫成分數(shù)形式,等號兩端的分子和分母分別交叉相乘,它們的積相等。第三單元百分數(shù)一、百分數(shù)的意義:表示一個數(shù)是另一個數(shù)的百分之幾。

注:百分數(shù)是專門用來表示一種特殊的倍比關系的,表示兩個數(shù)的比,所以,百分數(shù)又叫百分比或百分率,百分數(shù)不能帶單位。

1、百分數(shù)和分數(shù)的區(qū)別和聯(lián)系:

(1)聯(lián)系:都可以用來表示兩個量的倍比關系。

(2)區(qū)別:意義不同:百分數(shù)只表示倍比關系,不表示具體數(shù)量,所以不能帶單位。分數(shù)不僅表示倍比關系,還能帶單位表示具體數(shù)量。

百分數(shù)的分子可以是小數(shù),分數(shù)的分子只以是整數(shù)。

注:百分數(shù)在生活中應用廣泛,所涉及問題基本和分數(shù)問題相同,分母是100的分數(shù)并不是百分數(shù),必須把分母寫成“%”才是百分數(shù),所以“分母是100的分數(shù)就是百分數(shù)”這句話是錯誤的。“%”的兩個0要小寫,不要與百分數(shù)前面的數(shù)混淆。一般來講,出勤率、成活率、合格率、正確率能達到100%,出米率、出油率達不到100%,完成率、增長了百分之幾等可以超過100%。2、小數(shù)、分數(shù)、百分數(shù)之間的互化

(1)百分數(shù)化小數(shù):小數(shù)點向左移動兩位,去掉“%”。(2)小數(shù)化百分數(shù):小數(shù)點向右移動兩位,添上“%”。

(3)百分數(shù)化分數(shù):先把百分數(shù)寫成分母是100的分數(shù),然后再化簡成最簡分數(shù)。

(4)分數(shù)化百分數(shù):分子除以分母得到小數(shù),(除不盡的保留三位小數(shù))然后化成百分數(shù)。(5)小數(shù)化分數(shù):把小數(shù)化成分母是10、100、1000等的分數(shù)再化簡。(6)分數(shù)化小數(shù):分子除以分母。二、百分數(shù)應用題

1、求常見的百分率,如:達標率、及格率、成活率、發(fā)芽率、出勤率等求百分率就是求一個數(shù)是另一個數(shù)的百分之幾。

2、求一個數(shù)比另一個數(shù)多(或少)百分之幾,實際生活中,人們常用增加了百分之幾、減少了百分之幾、節(jié)約了百分之幾等來表示增加、或減少的幅度。求甲比乙多百分之幾(甲-乙)÷乙求乙比甲少百分之幾(甲-乙)÷甲

3、求一個數(shù)的百分之幾是多少。一個數(shù)(單位“1”)×百分率

2/4

4、已知一個數(shù)的百分之幾是多少,求這個數(shù)。部分量÷百分率=一個數(shù)(單位“1”)5、折扣折扣、打折的意義:幾折就是十分之幾也就是百分之幾十折扣成數(shù)幾分之幾百分之幾小數(shù)通用八折八成,十分之八,百分之八十,0.8八五折八成五十分之八點五,百分之八十五,0.85五折五成十分之五百分之五十0.5半價6、納稅繳納的稅款叫做應納稅額。(應納稅額)÷(總收入)=(稅率)(總收入)×(稅率)=(應納稅額)7、利率

(1)存入銀行的錢叫做本金。

(2)取款時銀行多支付的錢叫做利息。(3)利息與本金的比值叫做利率。利息=本金×利率×時間8、百分數(shù)應用題型分類

(1)求甲是乙的百分之幾(甲÷乙)=百分之幾

(2)求甲比乙多(少)百分之幾(甲-乙)÷乙=百分之幾或(乙-甲)÷乙=百分之幾例

①甲是50,乙是40,甲是乙的百分之幾?(50是40的百分之幾?)50÷40=125%②甲是50,乙是40,乙是甲的百分之幾?(40是50的百分之幾?)40÷50=80%③乙是40,甲是乙的125%,甲數(shù)是多少?(40的125%是多少?)40×125%=50④甲是50,乙是甲的80%,乙數(shù)是多少?(50的80%是多少?)50×80%=40

⑤乙是40,乙是甲的80%,甲數(shù)是多少?(一個數(shù)的80%是40,這個數(shù)是多少?)40÷80%=50⑥甲是50,甲是乙的125%,乙數(shù)是多少?(一個數(shù)的125%是50,這個數(shù)是多少?)50÷125%=40⑦甲是50,乙是40,甲比乙多百分之幾?(50比40多百分之幾?)(50-40)÷40×100%=25%⑧甲是50,乙是40,乙比甲少百分之幾?(40比50少百分之幾?)(50-40)÷50×100%=20%⑨甲比乙多25%,多10,乙是多少?10÷25%=40⑩甲比乙多25%,多10,甲是多少?10÷25%+10=50乙比甲少20%,少10,甲是多少?10÷20%=50乙比甲少20%,少10,乙是多少?10÷20%-10=40

乙是40,甲比乙多25%,甲數(shù)是多少?(什么數(shù)比40多25%?)40×(1+25%)=50甲是50,乙比甲少20%,乙數(shù)是多少?(什么數(shù)比50多25%?)50×(1-20%)=40乙是40,比甲少20%,甲數(shù)是多少?(40比什么數(shù)少20%?)40÷(1-20%)=50甲是50,比乙多25%,乙數(shù)是多少?(50比什么數(shù)多25%?)50÷(1+25%)=40

第四單元比例尺

1、圖上距離和實際距離的比,叫做這幅圖的比例尺。2、圖上距離實際距離=比例尺

3、求比例尺時要特別注意:圖上距離和實際距離單位統(tǒng)一再化簡。

比例尺是一個比,不應帶計量單位。

為了計算簡便,通常把比例尺寫成前項(后項)為1的比。

4、根據(jù)比例尺的表現(xiàn)形式比例尺可分為:數(shù)值比例尺、線段比例尺5、線段比例尺:

圖上1厘米表示實際距離20千米

6、數(shù)值比例尺:1:201*000圖上1厘米表示實際距離201*000厘米或圖上1厘米表示實際距離20千米

3/4

第六單元圓的周長和面積

一、圓的周長:圍成圓的曲線的長度叫做圓的周長,周長用字母C表示。1、圓的周長總是直徑的三倍多一些。

2、圓周率:圓的周長與直徑的比值是一個固定不變的數(shù),叫做圓周率,用字母π表示。即:圓周率π=周長÷直徑≈3.14

所以,圓的周長(c)=直徑(d)×圓周率(π)周長公式:c=πd,c=2πr注:圓周率π是一個無限不循環(huán)小數(shù),3.14是近似值。

3、周長的變化的規(guī)律:半徑擴大多少倍直徑也擴大多少倍,周長擴大的倍數(shù)與半徑、直徑擴大的倍數(shù)相同。

如果r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c34、半圓周長=圓周長一半+直徑=2πr=πr+d二、圓的面積s

1、圓面積公式的推導

如圖把一個圓沿直徑等分成若干份,剪開拼成長方形,份數(shù)越多拼成的圖像越接近長方形。圓的半徑=長方形的寬

圓的周長的一半=長方形的長長方形面積=長×寬

所以:圓的面積=長方形的面積=長×寬=圓的周長的一半(πr)×圓的半徑(r)S圓=πr×r=πr2

2、幾種圖形,在面積相等的情況下,圓的周長最短,而長方形的周長最長;反之,在周長相等的情況下,圓的面積則最大,而長方形的面積則最小。

周長相同時,圓面積最大,利用這一特點,籃子、盤子做成圓形。

3、圓面積的變化的規(guī)律:半徑擴大多少倍直徑、周長也同時擴大多少倍,圓面積擴大的倍數(shù)是半徑、直徑擴大的倍數(shù)的平方倍。

如果:r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c3=2∶3∶4則:S1∶S2∶S3=4∶9∶16

4、圓環(huán)面積=大圓面積小圓面積=πr大2-πr小2=π(r大2-r小2)5、跑道:每條跑道的周長等于兩半圓跑道合成的圓的周長加上兩條直跑道的和。注:一個圓的半徑增加a厘米,周長就增加2πa厘米

一個圓的直徑增加b厘米,周長就增加πb厘米

6、任意一個正方形的內切圓即最大圓的直徑是正方形的邊長,它們的面積比是4∶π7、常用數(shù)據(jù)π=3.142π=6.28

第七單元、統(tǒng)計

1、扇形統(tǒng)計圖的意義:用整個圓的面積表示總數(shù),用圓內各個扇形面積表示各部分數(shù)量同總數(shù)之間關系,也就是各部分數(shù)量占總數(shù)的百分比,因此也叫百分比圖。2、常用統(tǒng)計圖的優(yōu)點:

(1)、條形統(tǒng)計圖直觀顯示每個數(shù)量的多少。

(2)、折線統(tǒng)計圖不僅直觀顯示數(shù)量的增減變化,還可清晰看出各個數(shù)量的多少。(3)、扇形統(tǒng)計圖直觀顯示部分和總量的關系。

4/4

擴展閱讀:【人教版】小學數(shù)學六年級上冊知識點總結

【人教版】小學數(shù)學六年級上冊知識點總結

【編者按】小學六年級數(shù)學是小學階段學習數(shù)學的最后一年,它是同學們進入中學學好數(shù)學的關鍵。在上冊中,同學們會學習到新的本領,比如:用兩個數(shù)據(jù)來確定物理的位置,分數(shù)計算,用圓、百分數(shù)的知識來解決生活中的問題等。一、目標與要求

1.使學生能在方格紙上用數(shù)對確定位置。

2.使學生理解分數(shù)乘法的意義,掌握分數(shù)乘法的計算法則,并能熟練地進行計算。3.使學生理解倒數(shù)的意義,掌握求倒數(shù)的方法。

4.理解并掌握分數(shù)除法的計算方法,會進行分數(shù)除法計算。

5.理解比的意義,知道比與分數(shù)、除法的關系,并能類推出比的基本性質。能夠正確地化簡比和求比值。

6.使學生認識圓,掌握圓的特征;理解直徑與半徑的相互關系;理解圓周率的意義,掌握圓周率的近似值。

7.使學生理解和掌握求圓的周長與面積的計算公式,并能正確地計算圓的周長與面積。二、重、難點

1.能用數(shù)對表示物體的位置,正確區(qū)分列和行的順序;

2.使學生理解分數(shù)乘整數(shù)的意義,掌握分數(shù)乘整數(shù)的計算方法;3.掌握求倒數(shù)的方法;

4.圓的周長和圓周率的意義,圓周長公式的推導過程;5.百分數(shù)的意義,求一個數(shù)是另一個數(shù)的百分之幾的應用題;

6.理解圓周率“π”;圓面積計算公式的推導以及畫具有定半徑或直徑的圓;7.理解比的意義。三、知識點概念總結

1.分數(shù)乘法:分數(shù)乘法的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)和的簡便運算。2.分數(shù)乘法的計算法則

分數(shù)乘整數(shù),用分數(shù)的分子和整數(shù)相乘的積作分子,分母不變;分數(shù)乘分數(shù),用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零.。3.分數(shù)乘法意義

分數(shù)乘整數(shù)的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)的和的簡便運算。一個數(shù)與分數(shù)相乘,可以看作是求這個數(shù)的幾分之幾是多少。4.分數(shù)乘整數(shù):數(shù)形結合、轉化化歸5.倒數(shù):乘積是1的兩個數(shù)叫做互為倒數(shù)。6.分數(shù)的倒數(shù)

找一個分數(shù)的倒數(shù),例如3/4把3/4這個分數(shù)的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/3。3/4是4/3的倒數(shù),也可以說4/3是3/4的倒數(shù)。7.整數(shù)的倒數(shù)

找一個整數(shù)的倒數(shù),例如12,把12化成分數(shù),即12/1,再把12/1這個分數(shù)的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是1/12,12是1/12的倒數(shù)。8.小數(shù)的倒數(shù)

普通算法:找一個小數(shù)的倒數(shù),例如0.25,把0.25化成分數(shù),即1/4,再把1/4這個分數(shù)的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/19.用1計算法:也可以用1去除以這個數(shù),例如0.25,1/0.25等于4,所以0.25的倒數(shù)4,因為乘積是1的兩個數(shù)互為倒數(shù)。分數(shù)、整數(shù)也都使用這種規(guī)律。10.分數(shù)除法:分數(shù)除法是分數(shù)乘法的逆運算。11.分數(shù)除法計算法則:

甲數(shù)除以乙數(shù)(0除外),等于甲數(shù)乘乙數(shù)的倒數(shù)。

12.分數(shù)除法的意義:與整數(shù)除法的意義相同,都是已知兩個因數(shù)的積與其中一個因數(shù)求另一個因數(shù)。

13.分數(shù)除法應用題:先找單位1。單位1已知,求部分量或對應分率用乘法,求單位1用除法。14.比和比例:

比和比例一直是學數(shù)學容易弄混的幾大問題之一,其實它們之間的問題完全可以用一句話概括:比,等同于算式中等號左邊的式子,是式子的一種(如:a:b);比例,由至少兩個稱為比的式子由等號連接而成,且這兩個比的比值是相同(如:a:b=c:d)。所以,比和比例的聯(lián)系就可以說成是:比是比例的一部分;而比例是由至少兩個比值

相等的比組合而成的。表示兩個比相等的式子叫做比例,是比的意義。比例有4項,前項后項各2個.

15.比的基本性質:比的前項和后項都乘以或除以一個不為零的數(shù)。比值不變。比的性質用于化簡比。

比表示兩個數(shù)相除;只有兩個項:比的前項和后項。

比例是一個等式,表示兩個比相等;有四個項:兩個外項和兩個內項。

16.比例的性質:在比例里,兩個外項的乘積等于兩個內項的乘積。比例的性質用于解比例。

17.比和比例的區(qū)別

(1)意義、項數(shù)、各部分名稱不同。比表示兩個數(shù)相除;只有兩個項:比的前項和后項。如:a:b這是比比例是一個等式,表示兩個比相等;有四個項:兩個外項和兩個內項。a:b=3:4這是比例。

(2)比的基本性質和比例的基本性質意義不同、應用不同。比的性質:比的前項和后項都乘或除以一個不為零的數(shù)。比值不變。比例的性質:在比例里,兩個外項的乘積等于兩個內項的乘積相等。比例的性質用于解比例。聯(lián)系:比例是由兩個相等的比組成。

18.比和比例的意義

比的意義是兩個數(shù)的除又叫做兩個數(shù)的比,而比例的意義是表示兩個比相等的式子是叫做比例。比是表示兩個數(shù)相除,有兩項;比例是一個等式,表示兩個比相等,有四項。因此,比和比例的意義也有所不同。而且,比號沒有括號的含義而另一種形式,分數(shù)有括號的含義!19.比和比例的聯(lián)系:

比和比例有著密切聯(lián)系。比是研究兩個量之間的關系,所以它有兩項;比例是研究相關聯(lián)的兩種量中兩組相對應數(shù)的關系,所以比例是由四項組成。比例是由比組成的,如果沒有兩種量的比,比例就不會存在。比例是比的發(fā)展,如果把比例式中右邊的比看成一個數(shù),比和比例此時又可以統(tǒng)一起來。如果兩個比相等,那么這兩個比就可以組成比例。成比例的兩個比的比值一定相等。

20.圓:平面上到定點的距離等于定長的所有點組成的圖形叫做圓。

21.圓心:圓任意兩條對稱軸的交點為圓心。注:圓心一般符號O表示

22.直徑:通過圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。

23.半徑:連接圓心和圓上任意一點的線段,叫做圓的半徑。半徑一般用字母r表示。圓的直徑和半徑都有無數(shù)條。圓是軸對稱圖形,每條直徑所在的直線是圓的對稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=d/2。圓的半徑或直徑?jīng)Q定圓的大小,圓心決定圓的位置。

24.圓的周長:圍成圓的曲線的長度叫做圓的周長,用字母C表示。25.圓周率:圓的周長與直徑的比值叫做圓周率。

圓的周長除以直徑的商是一個固定的數(shù),把它叫做圓周率,它是一個無限不循環(huán)小數(shù)(無理數(shù)),用字母π表示。計算時,通常取它的近似值,π≈3.14。直徑所對的圓周角是直角。90°的圓周角所對的弦是直徑。

26.圓的面積公式:圓所占平面的大小叫做圓的面積。πr^2;,用字母S表示。一條弧所對的圓周角是圓心角的二分之一。

在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距也相等。在同圓或等圓中,如果兩條弧相等,那么他們所對的圓心角相等,所對的弦相等,所對的弦心距也相等。27.周長計算公式(1)已知直徑:C=πd(2)已知半徑:C=2πr(3)已知周長:D=c/π

(4)圓周長的一半:1/2周長(曲線)

(5)半圓的周長:1/2周長+直徑(π÷2+1)28.面積計算公式:(1)已知半徑:S=πr2(2)已知直徑:S=π(d/2)(3)已知周長:S=π[c÷(2π)]29.百分數(shù)與分數(shù)的區(qū)別

(1)意義不同。百分數(shù)是“表示一個數(shù)是另一個數(shù)的百分之幾的數(shù)。”它只能表示兩數(shù)之間的倍數(shù)關系,不能表示某一具體數(shù)量。因此,百分數(shù)后面不能帶單位名稱。分數(shù)是“把單位‘1’平均分成若干份,表示這樣一份或幾份的數(shù)”。分數(shù)還可以表示兩數(shù)之間的倍數(shù)關系.

(2)應用范圍不同。百分數(shù)在生產(chǎn)、工作和生活中,常用于調查、統(tǒng)計、分析與比較。而分數(shù)常常是在測量、計算中,得不到整數(shù)結果時使用。

(3)書寫形式不同。百分數(shù)通常不寫成分數(shù)形式,而采用百分號“%”來表示。因此,不論百分數(shù)的分子、分母之間有多少個公約數(shù),都不約分;百分數(shù)的分子可以是自然數(shù),也可以是小數(shù)。

而分數(shù)的分子只能是自然數(shù),它的表示形式有:真分數(shù)、假分數(shù)、帶分數(shù),計算結果不是最簡分數(shù)的一般要通過約分化成最簡分數(shù),是假分數(shù)的要化成帶分數(shù)。任何一個百分數(shù)都可以寫成分母是100的分數(shù),而分母是100的分數(shù)并不都具有百分數(shù)的意義.(4)百分數(shù)不能帶單位名稱;當分數(shù)表示具體數(shù)時可帶單位名稱。30.百分數(shù)應用

百分數(shù)一般有三種情況:①100%以上,如:增長率、增產(chǎn)率等。②100%以下,如:

2

發(fā)芽率、成長率等。③剛好100%,如:正確率,合格率等。31.百分數(shù)的意義

百分數(shù)只可以表示分率,而不能表示具體量,所以不能帶單位。百分數(shù)概念的形成應以學生實際生活中的事例或工農業(yè)生產(chǎn)中的事例引入。32.日常應用

每天在電視里的天氣預報節(jié)目中,都會報出當天晚上和明天白天的天氣狀況、降水概率等,提示大家提前做好準備,就像今天的夜晚的降水概率是20%,明天白天有五~六級大風,降水概率是10%,早晚應增加衣服。20%、10%讓人一目了然,既清楚又簡練。知識點擴展1.圓的定義

幾何說:平面上到定點的距離等于定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。

軌跡說:平面上一動點以一定點為中心,一定長為距離運動一周的軌跡稱為圓周,簡稱圓。

集合說:到定點的距離等于定長的點的集合叫做圓。

2.圓弧和弦:圓上任意兩點間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧,半圓既不是優(yōu)弧,也不是劣弧。連接圓上任意兩點的線段叫做弦。圓中最長的弦為直徑。

3.圓心角和圓周角:頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。

4.內心和外心:和三角形三邊都相切的圓叫做這個三角形的內切圓,其圓心稱為內心。過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。5.扇形:在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形。圓錐側面展開圖是一個扇形。這個扇形的半徑稱為圓錐的母線。

6.圓的種類:(1)整體圓形,(2)弧形圓,(3)扁圓,(4)橢形圓,(5)纏絲圓,(6)螺旋圓,(7)圓中圓、圓外圓,(8)重圓,(9)橫圓,(10)豎圓,(11)斜圓。7.圓和其他圖形的位置關系:圓和點的位置關系:以點P與圓O的為例(設P是一點,則PO是點到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內,0≤PO

8.百分數(shù)的由來

200多年前,瑞士數(shù)學家歐拉,在《通用算術》一書中說,要想把7米長的一根繩子分成三等份是不可能的,因為找不到一個合適的數(shù)來表示它。如果我們把它分成三等份,每份是7/3米,就是一種新的數(shù),我們把它叫做分數(shù)。而后,人們在分數(shù)的基礎上又以100做基數(shù),發(fā)明了百分數(shù)。

友情提示:本文中關于《冀教版數(shù)學知識點總結(六上)》給出的范例僅供您參考拓展思維使用,冀教版數(shù)學知識點總結(六上):該篇文章建議您自主創(chuàng)作。

來源:網(wǎng)絡整理 免責聲明:本文僅限學習分享,如產(chǎn)生版權問題,請聯(lián)系我們及時刪除。


冀教版數(shù)學知識點總結(六上)》由互聯(lián)網(wǎng)用戶整理提供,轉載分享請保留原作者信息,謝謝!
鏈接地址:http://m.taixiivf.com/gongwen/472450.html