王牌对王牌第一季综艺,黄视频在线观看网站,世界一级毛片,成人黄色免费看

薈聚奇文、博采眾長(zhǎng)、見賢思齊
當(dāng)前位置:公文素材庫 > 計(jì)劃總結(jié) > 工作總結(jié) > 初三上證明三總結(jié)

初三上證明三總結(jié)

網(wǎng)站:公文素材庫 | 時(shí)間:2019-05-28 02:37:44 | 移動(dòng)端:初三上證明三總結(jié)

初三上證明三總結(jié)

證明三本章總結(jié)

本章概念地圖

專題一數(shù)學(xué)思想方法

一.轉(zhuǎn)化思想

其本質(zhì)就是把未知的問題轉(zhuǎn)化成已知的問題,把未證的問題轉(zhuǎn)化成已證的問題,以達(dá)到解決問題的目的,將四邊形問題轉(zhuǎn)化為三角形問題來解決是本章最主要的思想方法,對(duì)于平行四邊形以及特殊平行四邊形,常常借助對(duì)角線來轉(zhuǎn)化;對(duì)于梯形,常常是通過作輔助線,將其轉(zhuǎn)化為三角形與平行四邊形問題來處理。

1.如圖3-C-1,在菱形ABCD中,E、F分別為BC、CD上的點(diǎn),且∠B=∠EAF=600,若∠BAE=200.求:∠CEF的度數(shù).

二、代數(shù)方法

通過計(jì)算來解決幾何問題的方法即為代數(shù)方法,要全靈活運(yùn)用代數(shù)方法解決幾何問題。

0

2.如圖3-C-2,在ABCD中,過點(diǎn)A作AE⊥BC于點(diǎn)E,AF⊥CD于點(diǎn)F,若∠EAF=60.求:(1)∠B與∠C的度數(shù);(2)若AE=2cm,AF=3cm,求ABCD的面積。

三、變換思想

即運(yùn)用平移、旋轉(zhuǎn)與對(duì)稱等變換來構(gòu)造圖形解決幾何問題的思想方法。

3.如圖3-C-3,在正方形ABCD中,E為AD上一點(diǎn),BF平分∠CBE交DC于點(diǎn)F,求證:BE=CF+AE.四、基本圖形法

當(dāng)題設(shè)中出現(xiàn)中點(diǎn)時(shí),常構(gòu)造中位線、直線、三角形斜邊上的中線等基本圖形,應(yīng)用相關(guān)定理解題,中位線定理是本章新探索的定理,利用它可以產(chǎn)生新的平行或數(shù)量關(guān)系,從而達(dá)到解題的目的。4.如圖3-C-4,AD為△ABC的高,∠B=2∠C,M為BC的中點(diǎn),求證:DM=

專題二基本概念和基本定理

5.下列說法錯(cuò)誤的個(gè)數(shù)為().

①一組鄰邊相等的矩形是正方形;②等腰梯形的對(duì)角線相等;③一組對(duì)邊相等,另一組對(duì)邊平行的四邊形是平行四邊形;④三角形三條內(nèi)角平分線的交點(diǎn)到三個(gè)頂點(diǎn)的距離相等;⑤全等三角形對(duì)應(yīng)角相等的逆命題是真命題。

A.1B.2C.3D.4

專題三平面圖形的有關(guān)證明

6.如圖3-C-5,在△ABC中,AB=AC,D是BC的中點(diǎn),DE⊥AB,DF⊥AC,垂足分別為點(diǎn)E、F。(1)求證:DE=DF;

(2)只添加一個(gè)條件,使四邊形EDFA是正方形,請(qǐng)你至少寫出兩種不同的添加方法(不另外添加輔助線,無需證明)。

7.如圖3-C-6,正方形ABCD中,點(diǎn)E在AD上,點(diǎn)F在CD上,∠EBF=450,BG⊥EF于點(diǎn)G。求證:AB=BG。

8.如圖3-C-7,在梯形ABCD中,AD∥BC,AB≠DC,點(diǎn)E、F分別是AD、BC的中點(diǎn)。求證:EF<

1212AB。

(AB+CD)

專題四平面圖形的相關(guān)計(jì)算

9.如圖3-C-8,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大正方形的邊長(zhǎng)為10cm,正方形A的邊長(zhǎng)為6cm,正方形B的邊長(zhǎng)為5cm,正方形C的邊長(zhǎng)為5cm,則正方形D的邊長(zhǎng)為.10.如圖3-C-9,在梯形ABCD中,AB∥DC,DB⊥BC,AD=AB=BC,求∠BCD、∠BAD的度數(shù)。

綜合應(yīng)用創(chuàng)新

11.如圖3-C-10.在菱形ABCD中,AB=1,∠BAD=600.E是AB的中點(diǎn),P是對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),則PE=PB的最小值是.

12.(探究題)如圖3-C-11,把矩形紙片ABCD沿EF折疊,使點(diǎn)B落在邊AD上的點(diǎn)B′處,點(diǎn)A落在點(diǎn)A′處。

(1)求證:B′E=BF;(2)設(shè)AE=a,AB=b,BF=c,試猜想a,b,c之間的一種數(shù)量關(guān)系,并給予證明。

13.如圖3-C-12,正方形木框ABCD的邊長(zhǎng)為1,四個(gè)角鉚釘連接著,一邊BC固定在桌面上,沿AD方向用力推,正方形變成四邊形A′BCD′,設(shè)A′D′交DC于點(diǎn)E,當(dāng)E是DC的中點(diǎn)時(shí),兩四邊形ABCD、A′BCD′重疊部分的面積是.

14.(操作題)如圖3-C-13(1),一等腰直角三角尺GEF的兩條直角邊與正方形ABCD的兩條邊分別重合在一起,現(xiàn)正方形ABCD保持不動(dòng),將三角尺GEF繞斜邊EF的中點(diǎn)O(點(diǎn)O也是BD中點(diǎn))按順時(shí)針方向旋轉(zhuǎn)。

(1)如圖3-C-13(2),當(dāng)EF與AB相交于點(diǎn)M,GF與BD相交于點(diǎn)N時(shí),通過觀察或測(cè)量BM,F(xiàn)N的長(zhǎng)度,猜想BM、FN滿足的數(shù)量關(guān)系,并證明你的猜想;

(2)若三角尺GEF旋轉(zhuǎn)到如圖3-C-13(3)所示的位置時(shí),線段FE的延長(zhǎng)線與AB的延長(zhǎng)線交于點(diǎn)M,線段BD的延長(zhǎng)線與GF的延長(zhǎng)線交于點(diǎn)N,此時(shí),(1)中的猜想還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由。

中考命題方向

本章內(nèi)容是近幾年中考的主要內(nèi)容之一,常見的題型一般是先根據(jù)已知條件判定平行四邊形和特殊平行四邊形,然后再應(yīng)用平行四邊形、特殊平行四邊形、梯形的性質(zhì),計(jì)算或證明某一結(jié)論。運(yùn)用三角形中位線進(jìn)行計(jì)算,區(qū)分平行四邊形和特殊平行四邊形的判定與性質(zhì),也是常見的一種選擇題型。另外,有關(guān)的探索題、操作題的頻繁出現(xiàn),也體現(xiàn)了新的考查趨向。

15.(仙桃中考)如圖3-C-14,四邊形3-C-14,四邊形ABCD是菱形,過點(diǎn)A作BD的平行線交CD的延長(zhǎng)線于點(diǎn)E,則下列式子不成立的是().

0

A.DA=DEB.BD=CEC.∠EAC=90D.∠ABC=2∠E16.(濟(jì)南中考)如圖3-C-15!鰽BC中,EF為△ABC的中位線,D為BC邊上一點(diǎn)(不與B、C重合),AD與EF交于點(diǎn)O,連接DE、DF,要使四邊形AEDF為平行四邊形,需要添加條件。(只添加一個(gè)條件)

17.(岳陽中考)如圖3-C-6,正方形ABCD的對(duì)角線相交于點(diǎn)O,∠BAC的平分線交BD于點(diǎn)G,交BCBC于點(diǎn)F,過O作OH∥BC交AF于點(diǎn)H,求證:OG=

12FG。

18.(南京中考)如圖3-C-17,在ABCD中,E、F為BC上兩點(diǎn),且BE=CF,AF=DE。求證:(1)△ABF≌△DCE;(2)四邊形ABCD是矩形。

19.(茂名中考)如圖3-C-18,在等腰梯形ABCD中,已知AD∥BC,AB=DC,AD=2,BC=4,延長(zhǎng)BC到E,使CE=AD。

(1)寫出圖中所有與△DCE全等的三角形,并選擇其中一對(duì)說明全等的理由;

(2)探究當(dāng)?shù)妊菪蜛BCD的高DF是多少時(shí),對(duì)角線AC與BD互相垂直,請(qǐng)回答并說明現(xiàn)由。

本章測(cè)試

一、選擇題(每小題3分,共18分)

0

1.在梯形ABCD中,AD∥BC,AB=DC,BD⊥DC于D,∠C=60,AD=5,則CD的長(zhǎng)度為().A.3B.4C.5D.62.在Rt△ABC中,∠ACB=900,∠A=300,AC=3cm,則AB邊上的中線為().A.1cmB.2cmC.1.5cmD.

3cm3.等邊三角形一邊上高線長(zhǎng)為23cm,那么么這個(gè)等腰三角形的中位線長(zhǎng)為().

A.3cmB.2.5cmC.2cmD.4cm4.下列命題正確的是().

A.對(duì)角線互相垂直的四邊形是菱形B.兩角相等的四邊形是梯形

C.四邊相等且有一個(gè)角是直角的四邊形是正方形D.兩條對(duì)角線相等且互相垂直的四邊形是正方形5.若順次連接四邊形各邊中點(diǎn)所得四邊形是矩形,則原四邊形一定是().

A.等腰梯形B.對(duì)角線相等的四邊形C.平行四邊形D.對(duì)角線互相垂直的四邊形6.如圖3-C-19,E、F分別是正方形ABCD的邊CD、AD上的點(diǎn),且CE=DF,AE、BF相交于點(diǎn)O,下列結(jié)論:①AE=BF;②AE⊥BF;③OA=OE;④S△AOB=S四邊形DEOF中,錯(cuò)誤的有().A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

二、填空題(每小題3分,共24分)

7.已知菱形的周長(zhǎng)為40cm,一條對(duì)角線長(zhǎng)為16cm,則這個(gè)菱形的面積為.

8.如圖3-C-20,E、F是ABCD對(duì)角線BD上的兩點(diǎn),請(qǐng)你添加一個(gè)適當(dāng)?shù)臈l件:,使四邊形AECF是平行四邊形。

9.如圖3-C-21,在ABCD中,若AB=12,AB邊上的高DF為3,BC邊上的高DE為6,則ABCD的周長(zhǎng)為.

10.在等腰梯形ABCD中,AD∥BC,對(duì)角線AC⊥BD,若AD=3cm,BC=7cm,則梯形ABCD的高是cm。11.如圖3-C-22,四邊形ABCD的兩條對(duì)角線AC、BD,互相垂直,A1B1C1D1是四邊形ABCD各邊中點(diǎn)組成的四邊形,如果AC=8,BD=10,那么四邊形A1B1C1D1的面積為.

12.如圖3-C-23,請(qǐng)寫出等腰梯形ABCD(AB∥CD)特有而一般梯形不具有的三個(gè)特征:;;。

13.如圖3-C-24,若將四根木條釘成的矩形木框變?yōu)锳BCD的形狀,并使其面積為矩形面積的一半,則這個(gè)平行四邊形的一個(gè)最大內(nèi)角的值等于.

14.如圖3-C-25,在等邊三角形ABC中,D、E、F分別是AB、BC、CA邊上的中點(diǎn),那么圖中有個(gè)等邊三角形,有個(gè)菱形。

三、作圖題(8分)

15.如圖3-C-26,在湖的兩岸A、B間建一棄權(quán)票觀賞橋,由于條件限制,無法直接度量A、B兩點(diǎn)間的距離,請(qǐng)你用學(xué)過的數(shù)學(xué)知識(shí)按以下要求設(shè)計(jì)一個(gè)測(cè)量方案。(1)畫出測(cè)量圖案;(2)寫出測(cè)量步驟;(測(cè)量數(shù)據(jù)用字母表示)(3)計(jì)算AB的距離。(寫出求解或推理過程,結(jié)果用字母表示)

四、解答題(共70分)

16(12分)如圖3-C-27,在ABCD中,E、F分別為AB、CD上的點(diǎn),且∠DAF=∠BCE。(1)求證:△DAF≌BCE;

00

(2)若∠ABC=60,∠ECB=20,∠ABC的平分線BN交AF于點(diǎn)M,交AD于點(diǎn)N,求∠AMN的度數(shù)?

17.(10分)如圖3-C-28,點(diǎn)B、E、C、F在一條直線上,AB=DE,∠B=∠DEF,BE=CF。求證:(1)△ABC≌△DEF;(2)四邊形ABED是平行四邊形。

0

18.(12分)如圖3-C-29,在△ABC中,∠BAC=90,AD⊥BC于點(diǎn)D,CE平分∠ACB,交AD于點(diǎn)G,交AB于點(diǎn)E,EF⊥BC于點(diǎn)F,求證:四邊形AEFG是菱形。

19(12分)如圖3-C-30,四邊形ABCD,DEFG都是正方形,連接AE、CG。求證:AE=CG;(2)觀察圖形,猜想AE與CG之間的位置關(guān)系,并證明你的猜想。

20.(12分)如圖3-C-31,AD是△ABC中BC邊上的高線,F(xiàn)、E、G分別是AB、BC、AC的中點(diǎn)。求證:四邊形EDGF為等腰梯形。

21.(12分)如圖3-C-32,在正方形ABCD中,AE=BE,BF=CF,DF、CE交于點(diǎn)M,求證:AM=AD.

擴(kuò)展閱讀:北師大版九年級(jí)數(shù)學(xué)證明三總結(jié)

鼎大文化培訓(xùn)學(xué)校

鼎大教育九年級(jí)數(shù)學(xué)證明三

本章總結(jié)

本章概念地圖

專題一數(shù)學(xué)思想方法

一.轉(zhuǎn)化思想

其本質(zhì)就是把未知的問題轉(zhuǎn)化成已知的問題,把未證的問題轉(zhuǎn)化成已證的問題,以達(dá)到解決問題的目的,將四邊形問題轉(zhuǎn)化為三角形問題來解決是本章最主要的思想方法,對(duì)于平行四邊形以及特殊平行四邊形,常常借助對(duì)角線來轉(zhuǎn)化;對(duì)于梯形,常常是通過作輔助線,將其轉(zhuǎn)化為三角形與平行四邊形問題來處理。

1.如圖3-C-1,在菱形ABCD中,E、F分別為BC、CD上的點(diǎn),且∠B=∠EAF=600,若∠BAE=200.求:∠CEF的度數(shù).

二、代數(shù)方法

通過計(jì)算來解決幾何問題的方法即為代數(shù)方法,要全靈活運(yùn)用代數(shù)方法解決幾何問題。

0

2.如圖3-C-2,在ABCD中,過點(diǎn)A作AE⊥BC于點(diǎn)E,AF⊥CD于點(diǎn)F,若∠EAF=60.求:(1)∠B與∠C的度數(shù);(2)若AE=2cm,AF=3cm,求ABCD的面積。

地址:渭南市東風(fēng)街中段華岳商城5F0913-815100181510鼎大文化培訓(xùn)學(xué)校

三、變換思想

即運(yùn)用平移、旋轉(zhuǎn)與對(duì)稱等變換來構(gòu)造圖形解決幾何問題的思想方法。

3.如圖3-C-3,在正方形ABCD中,E為AD上一點(diǎn),BF平分∠CBE交DC于點(diǎn)F,求證:BE=CF+AE.

四、基本圖形法

當(dāng)題設(shè)中出現(xiàn)中點(diǎn)時(shí),常構(gòu)造中位線、直線、三角形斜邊上的中線等基本圖形,應(yīng)用相關(guān)定理解題,中位線定理是本章新探索的定理,利用它可以產(chǎn)生新的平行或數(shù)量關(guān)系,從而達(dá)到解題的目的。4.如圖3-C-4,AD為△ABC的高,∠B=2∠C,M為BC的中點(diǎn),求證:DM=

專題二基本概念和基本定理

5.下列說法錯(cuò)誤的個(gè)數(shù)為().

①一組鄰邊相等的矩形是正方形;②等腰梯形的對(duì)角線相等;③一組對(duì)邊相等,另一組對(duì)邊平行的四邊形是平行四邊形;④三角形三條內(nèi)角平分線的交點(diǎn)到三個(gè)頂點(diǎn)的距離相等;⑤全等三角形對(duì)應(yīng)角相等的逆命題是真命題。

A.1B.2C.3D.4

專題三平面圖形的有關(guān)證明

6.如圖3-C-5,在△ABC中,AB=AC,D是BC的中點(diǎn),DE⊥AB,DF⊥AC,垂足分別為點(diǎn)E、F。(1)求證:DE=DF;

(2)只添加一個(gè)條件,使四邊形EDFA是正方形,請(qǐng)你至少寫出兩種不同的添加方法(不另外添加輔助線,無需證明)。

7.如圖3-C-6,正方形ABCD中,點(diǎn)E在AD上,點(diǎn)F在CD上,∠EBF=450,BG⊥EF于點(diǎn)G。求證:AB=BG。

地址:渭南市東風(fēng)街中段華岳商城5F0913-81510018151002

1AB。鼎大文化培訓(xùn)學(xué)校

8.如圖3-C-7,在梯形ABCD中,AD∥BC,AB≠DC,點(diǎn)E、F分別是AD、BC的中點(diǎn)。求證:EF<

12(AB+CD)

專題四平面圖形的相關(guān)計(jì)算

9.如圖3-C-8,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大正方形的邊長(zhǎng)為10cm,正方形A的邊長(zhǎng)為6cm,正方形B的邊長(zhǎng)為5cm,正方形C的邊長(zhǎng)為5cm,則正方形D的邊長(zhǎng)為.

10.如圖3-C-9,在梯形ABCD中,AB∥DC,DB⊥BC,AD=AB=BC,求∠BCD、∠BAD的度數(shù)。

綜合應(yīng)用創(chuàng)新

11.如圖3-C-10.在菱形ABCD中,AB=1,∠BAD=600.E是AB的中點(diǎn),P是對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),則PE=PB的最小值是.

12.(探究題)如圖3-C-11,把矩形紙片ABCD沿EF折疊,使點(diǎn)B落在邊AD上的點(diǎn)B′處,點(diǎn)A落在點(diǎn)A′處。

(1)求證:B′E=BF;(2)設(shè)AE=a,AB=b,BF=c,試猜想a,b,c之間的一種數(shù)量關(guān)系,并給予證明。

地址:渭南市東風(fēng)街中段華岳商城5F0913-815100181510鼎大文化培訓(xùn)學(xué)校

13.如圖3-C-12,正方形木框ABCD的邊長(zhǎng)為1,四個(gè)角鉚釘連接著,一邊BC固定在桌面上,沿AD方向用力推,正方形變成四邊形A′BCD′,設(shè)A′D′交DC于點(diǎn)E,當(dāng)E是DC的中點(diǎn)時(shí),兩四邊形ABCD、A′BCD′重疊部分的面積是.

14.(操作題)如圖3-C-13(1),一等腰直角三角尺GEF的兩條直角邊與正方形ABCD的兩條邊分別重合在一起,現(xiàn)正方形ABCD保持不動(dòng),將三角尺GEF繞斜邊EF的中點(diǎn)O(點(diǎn)O也是BD中點(diǎn))按順時(shí)針方向旋轉(zhuǎn)。

(1)如圖3-C-13(2),當(dāng)EF與AB相交于點(diǎn)M,GF與BD相交于點(diǎn)N時(shí),通過觀察或測(cè)量BM,F(xiàn)N的長(zhǎng)度,猜想BM、FN滿足的數(shù)量關(guān)系,并證明你的猜想;

(2)若三角尺GEF旋轉(zhuǎn)到如圖3-C-13(3)所示的位置時(shí),線段FE的延長(zhǎng)線與AB的延長(zhǎng)線交于點(diǎn)M,線段BD的延長(zhǎng)線與GF的延長(zhǎng)線交于點(diǎn)N,此時(shí),(1)中的猜想還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由。

中考命題方向

本章內(nèi)容是近幾年中考的主要內(nèi)容之一,常見的題型一般是先根據(jù)已知條件判定平行四邊形和特殊平行四邊形,然后再應(yīng)用平行四邊形、特殊平行四邊形、梯形的性質(zhì),計(jì)算或證明某一結(jié)論。運(yùn)用三角形中位線進(jìn)行計(jì)算,區(qū)分平行四邊形和特殊平行四邊形的判定與性質(zhì),也是常見的一種選擇題型。另外,有關(guān)的探索題、操作題的頻繁出現(xiàn),也體現(xiàn)了新的考查趨向。

15.(仙桃中考)如圖3-C-14,四邊形3-C-14,四邊形ABCD是菱形,過點(diǎn)A作BD的平行線交CD的延長(zhǎng)線于點(diǎn)E,則下列式子不成立的是().A.DA=DEB.BD=CE

0

C.∠EAC=90D.∠ABC=2∠E

16.(濟(jì)南中考)如圖3-C-15!鰽BC中,EF為△ABC的中位線,D為BC邊上一點(diǎn)(不與B、C重合),AD與EF交于點(diǎn)O,連接DE、DF,要使四邊形AEDF為平行四邊形,需要添加條件。(只添加一個(gè)條件)

地址:渭南市東風(fēng)街中段華岳商城5F0913-815100181510鼎大文化培訓(xùn)學(xué)校

17.(岳陽中考)如圖3-C-6,正方形ABCD的對(duì)角線相交于點(diǎn)O,∠BAC的平分線交BD于點(diǎn)G,交BCBC于點(diǎn)F,過O作OH∥BC交AF于點(diǎn)H,求證:OG=

12FG。

18.(南京中考)如圖3-C-17,在ABCD中,E、F為BC上兩點(diǎn),且BE=CF,AF=DE。求證:(1)△ABF≌△DCE;(2)四邊形ABCD是矩形。

19.(茂名中考)如圖3-C-18,在等腰梯形ABCD中,已知AD∥BC,AB=DC,AD=2,BC=4,延長(zhǎng)BC到E,使CE=AD。

(1)寫出圖中所有與△DCE全等的三角形,并選擇其中一對(duì)說明全等的理由;

(2)探究當(dāng)?shù)妊菪蜛BCD的高DF是多少時(shí),對(duì)角線AC與BD互相垂直,請(qǐng)回答并說明現(xiàn)由。

地址:渭南市東風(fēng)街中段華岳商城5F0913-815100181510鼎大文化培訓(xùn)學(xué)校

本章測(cè)試

一、選擇題(每小題3分,共18分)

0

1.在梯形ABCD中,AD∥BC,AB=DC,BD⊥DC于D,∠C=60,AD=5,則CD的長(zhǎng)度為().A.3B.4C.5D.62.在Rt△ABC中,∠ACB=900,∠A=300,AC=3cm,則AB邊上的中線為().A.1cmB.2cmC.1.5cmD.3.等邊三角形一邊上高線長(zhǎng)為23cm,那么么這個(gè)等腰三角形的中位線長(zhǎng)為().

A.3cmB.2.5cmC.2cmD.4cm4.下列命題正確的是().

A.對(duì)角線互相垂直的四邊形是菱形B.兩角相等的四邊形是梯形

C.四邊相等且有一個(gè)角是直角的四邊形是正方形D.兩條對(duì)角線相等且互相垂直的四邊形是正方形5.若順次連接四邊形各邊中點(diǎn)所得四邊形是矩形,則原四邊形一定是().

A.等腰梯形B.對(duì)角線相等的四邊形C.平行四邊形D.對(duì)角線互相垂直的四邊形6.如圖3-C-19,E、F分別是正方形ABCD的邊CD、AD上的點(diǎn),且CE=DF,AE、BF相交于點(diǎn)O,下列結(jié)論:①AE=BF;②AE⊥BF;③OA=OE;④S△AOB=S四邊形DEOF中,錯(cuò)誤的有().A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

二、填空題(每小題3分,共24分)

7.已知菱形的周長(zhǎng)為40cm,一條對(duì)角線長(zhǎng)為16cm,則這個(gè)菱形的面積為.

8.如圖3-C-20,E、F是ABCD對(duì)角線BD上的兩點(diǎn),請(qǐng)你添加一個(gè)適當(dāng)?shù)臈l件:,使四邊形AECF是平行四邊形。

9.如圖3-C-21,在ABCD中,若AB=12,AB邊上的高DF為3,BC邊上的高DE為6,則ABCD的周長(zhǎng)為.

10.在等腰梯形ABCD中,AD∥BC,對(duì)角線AC⊥BD,若AD=3cm,BC=7cm,則梯形ABCD的高是cm。11.如圖3-C-22,四邊形ABCD的兩條對(duì)角線AC、BD,互相垂直,A1B1C1D1是四邊形ABCD各邊中點(diǎn)組成的四邊形,如果AC=8,BD=10,那么四邊形A1B1C1D1的面積為.

12.如圖3-C-23,請(qǐng)寫出等腰梯形ABCD(AB∥CD)特有而一般梯形不具有的三個(gè)特征:;;。

13.如圖3-C-24,若將四根木條釘成的矩形木框變?yōu)锳BCD的形狀,并使其面積為矩形面積的一半,則這個(gè)平行四邊形的一個(gè)最大內(nèi)角的值等于.

14.如圖3-C-25,在等邊三角形ABC中,D、E、F分別是AB、BC、CA邊上的中點(diǎn),那么圖中有個(gè)等邊三角形,有個(gè)菱形。

地址:渭南市東風(fēng)街中段華岳商城5F0913-81510018151002

3cm鼎大文化培訓(xùn)學(xué)校

三、作圖題(8分)

15.如圖3-C-26,在湖的兩岸A、B間建一棄權(quán)票觀賞橋,由于條件限制,無法直接度量A、B兩點(diǎn)間的距離,請(qǐng)你用學(xué)過的數(shù)學(xué)知識(shí)按以下要求設(shè)計(jì)一個(gè)測(cè)量方案。(1)畫出測(cè)量圖案;(2)寫出測(cè)量步驟;(測(cè)量數(shù)據(jù)用字母表示)(3)計(jì)算AB的距離。(寫出求解或推理過程,結(jié)果用字母表示)

四、解答題(共70分)

16(12分)如圖3-C-27,在ABCD中,E、F分別為AB、CD上的點(diǎn),且∠DAF=∠BCE。(1)求證:△DAF≌BCE;

00

(2)若∠ABC=60,∠ECB=20,∠ABC的平分線BN交AF于點(diǎn)M,交AD于點(diǎn)N,求∠AMN的度數(shù)?

17.(10分)如圖3-C-28,點(diǎn)B、E、C、F在一條直線上,AB=DE,∠B=∠DEF,BE=CF。求證:(1)△ABC≌△DEF;(2)四邊形ABED是平行四邊形。

0

18.(12分)如圖3-C-29,在△ABC中,∠BAC=90,AD⊥BC于點(diǎn)D,CE平分∠ACB,交AD于點(diǎn)G,交AB于點(diǎn)E,EF⊥BC于點(diǎn)F,求證:四邊形AEFG是菱形。

地址:渭南市東風(fēng)街中段華岳商城5F0913-815100181510鼎大文化培訓(xùn)學(xué)校

19(12分)如圖3-C-30,四邊形ABCD,DEFG都是正方形,連接AE、CG。求證:AE=CG;(2)觀察圖形,猜想AE與CG之間的位置關(guān)系,并證明你的猜想。

20.(12分)如圖3-C-31,AD是△ABC中BC邊上的高線,F(xiàn)、E、G分別是AB、BC、AC的中點(diǎn)。求證:四邊形EDGF為等腰梯形。

21.(12分)如圖3-C-32,在正方形ABCD中,AE=BE,BF=CF,DF、CE交于點(diǎn)M,求證:AM=AD.

地址:渭南市東風(fēng)街中段華岳商城5F0913-815100181510

友情提示:本文中關(guān)于《初三上證明三總結(jié)》給出的范例僅供您參考拓展思維使用,初三上證明三總結(jié):該篇文章建議您自主創(chuàng)作。

來源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問題,請(qǐng)聯(lián)系我們及時(shí)刪除。


初三上證明三總結(jié)》由互聯(lián)網(wǎng)用戶整理提供,轉(zhuǎn)載分享請(qǐng)保留原作者信息,謝謝!
鏈接地址:http://m.taixiivf.com/gongwen/518454.html
相關(guān)文章