初一數(shù)學(xué)下學(xué)期總結(jié)
初一數(shù)學(xué)(下冊)教學(xué)工作總結(jié)
數(shù)學(xué)組:龍本祝(201*--201*學(xué)年度第二學(xué)期)我是一名年輕的特崗教師,本學(xué)期我擔(dān)任七年級(5)班數(shù)學(xué)教學(xué)工作。面對新課標(biāo)教學(xué),無論是教學(xué)內(nèi)容還是教學(xué)觀念方法方式方面都有新的挑戰(zhàn),我不敢放松自己,每天都花相當(dāng)部分時間到備課上,鉆研新課標(biāo),挖掘新的資源,以盡快適應(yīng)新形勢的數(shù)學(xué)教學(xué)。通過一個學(xué)期的努力,取得不少經(jīng)驗,同時也得到不少教訓(xùn),獲得失敗的傷痛,有時屢試屢敗?傊,磕磕絆絆、摸著石頭過河、邊學(xué)邊教、邊做邊適應(yīng)地走進新課標(biāo)。現(xiàn)將一學(xué)期來的成與敗總結(jié)如下,以備今后繼承發(fā)揚和摒棄吸取教訓(xùn)。
一、主要工作及取得的成績:1、做好課前準(zhǔn)備和課后反思工作
面對新的學(xué)生新的教材新的教學(xué)要求,激起我的挑戰(zhàn)欲望,決心立志要在新的老師角色中爭取教學(xué)教研方面有所成就。于是我每天花3小時以上時間認(rèn)真閱讀、挖掘、活用教材,研究教材的重點、難點、關(guān)鍵,研讀新課標(biāo),明白這節(jié)課的新要求,思考如何將新理念融入課堂教學(xué)中。認(rèn)真書寫教案,利用網(wǎng)絡(luò)資源,參考別人的教學(xué)教法教學(xué)設(shè)計,根據(jù)七(5)班同學(xué)的具體情況制定課時計劃。每一課都做好充分的準(zhǔn)備。為了使學(xué)生易懂易掌握,我還根據(jù)教材制作各種利于吸引學(xué)生注意力的有趣教具課后及時對該課作出總結(jié),寫好教學(xué)后記,并進行階段總結(jié),即每章一總結(jié),期中、期末一總結(jié),學(xué)完代數(shù)、幾何、統(tǒng)計知識又一總結(jié)。
2、把好上課關(guān),提高課堂教學(xué)效率、質(zhì)量。
新課標(biāo)的數(shù)學(xué)課通常采用“問題情境建立模型解釋、應(yīng)用與拓展”的模式展開,所有新知識的學(xué)習(xí)都以相關(guān)問題情境的研究作為開始,它們使學(xué)生了解與學(xué)習(xí)這些知識的有效切入點。所以在課堂上我想方設(shè)法創(chuàng)設(shè)能吸引學(xué)生注意的情境。在這一學(xué)期,我根據(jù)教學(xué)內(nèi)容的實際創(chuàng)設(shè)情境,讓學(xué)生一上課就感興趣,每節(jié)課都有新鮮感。3、虛心請教同組老師。在教學(xué)上,有疑必問。由于沒有新課標(biāo)教學(xué)經(jīng)驗,所以我的教學(xué)進度總是落在其他老師之后。我虛心向他們請教每節(jié)課的好做法和需要注意什么問題,結(jié)合他們的意見和自己的思考結(jié)果,總結(jié)出每課教學(xué)的經(jīng)驗和巧妙的方法。本學(xué)期我將自己在備課中想到的好點子以及遇到的問題整理成“教學(xué)反思錄”。
4、做好“培優(yōu)、輔中、穩(wěn)差”工作。根據(jù)七(5)班學(xué)生學(xué)習(xí)數(shù)學(xué)的基礎(chǔ)和潛力,我把他們分成三類:優(yōu)生15人,中層生共30人,待進生20人。除了老師輔導(dǎo)外,我還要求學(xué)生成立“數(shù)學(xué)學(xué)習(xí)互助小組”,即一名優(yōu)生負(fù)責(zé)一至兩名中層生和一名待進生,優(yōu)生經(jīng)常討論學(xué)習(xí)問題,弄懂弄透了才去輔導(dǎo)其他同學(xué)。
5、制定數(shù)學(xué)課堂常規(guī),促成良好學(xué)風(fēng)。我所教的兩個班,原來上課的時候不夠認(rèn)真,常有睡覺、開小差、講粗言爛語的現(xiàn)象,課后作業(yè)完成情況也糟糕,甚至有放棄學(xué)習(xí)數(shù)學(xué)的學(xué)生。對此,我提議制定數(shù)學(xué)課堂常規(guī),按常規(guī)進行獎罰。由于此常規(guī)是師生一起討論得來的,所以它得到全體同學(xué)的認(rèn)可。在數(shù)學(xué)課堂里迅速形成一種認(rèn)真、求實的學(xué)風(fēng),出現(xiàn)了“四少”:抄襲作業(yè)的行為少了,講粗言爛語的少了,上數(shù)學(xué)課開小差的少了,不學(xué)習(xí)數(shù)學(xué)的少了。出現(xiàn)了“三多”:熱愛學(xué)習(xí)數(shù)學(xué)的多了,好問者多了,文明禮貌的行為多起來了。
二、存在問題和今后努力方向:1、新課標(biāo)學(xué)習(xí)與鉆研還要加強;
2、課堂教學(xué)設(shè)計、研究、效果方面還要考慮;3、多媒體技術(shù)在課堂教學(xué)中的使用還有待提高;4、“培優(yōu)、輔中、穩(wěn)差”的方法方式還有待完善。三、具體措施
1、認(rèn)真學(xué)習(xí)教育教學(xué)理論,落實課標(biāo)理念,讓學(xué)生通過觀察、思考、探究、討論、歸納,主動地進行學(xué)習(xí)。認(rèn)真研究教材,體會新課標(biāo)理念,認(rèn)真上課、認(rèn)真輔導(dǎo)和批改作業(yè),同時讓學(xué)生認(rèn)真學(xué)習(xí)。
2、通過介紹數(shù)學(xué)家、數(shù)學(xué)史和數(shù)學(xué)趣題,激發(fā)學(xué)生學(xué)習(xí)興趣。3、引導(dǎo)學(xué)生積極參與知識建構(gòu),營造民主、和諧、平等,學(xué)生自主探究、合作共享發(fā)現(xiàn)快樂的課堂,讓學(xué)生體會學(xué)習(xí)的快樂。
4、通過實踐探索,培養(yǎng)學(xué)生歸納推理能力和多種途徑探求問題的解決方式。5、培育學(xué)生良好的學(xué)習(xí)習(xí)慣,發(fā)展學(xué)生的非智力因素。6、進行分層教育的探索,讓全體學(xué)生都得到充分的發(fā)展。
二0一一年七月六日
擴展閱讀:人教版__初一數(shù)學(xué)知識點下冊總結(jié)
博源教育曾老師1378780036611
初一數(shù)學(xué)(下)應(yīng)知應(yīng)會的知識點
二元一次方程組
1.二元一次方程:含有兩個未知數(shù),并且含未知數(shù)項的次數(shù)是1,這樣的方程是二元一次方程.注意:一般說二元一次方程有無數(shù)個解.
2.二元一次方程組:兩個二元一次方程聯(lián)立在一起是二元一次方程組.
3.二元一次方程組的解:使二元一次方程組的兩個方程,左右兩邊都相等的兩個未知數(shù)的值,叫二元一次方程組的解.注意:一般說二元一次方程組只有唯一解(即公共解).4.二元一次方程組的解法:(1)代入消元法;(2)加減消元法;(3)注意:判斷如何解簡單是關(guān)鍵.※5.一次方程組的應(yīng)用:
(1)對于一個應(yīng)用題設(shè)出的未知數(shù)越多,列方程組可能容易一些,但解方程組可能比較麻煩,反之則“難列
易解”;
(2)對于方程組,若方程個數(shù)與未知數(shù)個數(shù)相等時,一般可求出未知數(shù)的值;
(3)對于方程組,若方程個數(shù)比未知數(shù)個數(shù)少一個時,一般求不出未知數(shù)的值,但總可以求出任何兩個未知
數(shù)的關(guān)系.
一元一次不等式(組)
1.不等式:用不等號“>”“<”“≤”“≥”“≠”,把兩個代數(shù)式連接起來的式子叫不等式.2.不等式的基本性質(zhì):
不等式的基本性質(zhì)1:不等式兩邊都加上(或減去)同一個數(shù)或同一個整式,不等號的方向不變;不等式的基本性質(zhì)2:不等式兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變;不等式的基本性質(zhì)3:不等式兩邊都乘以(或除以)同一個負(fù)數(shù),不等號的方向要改變.
3.不等式的解集:能使不等式成立的未知數(shù)的值,叫做這個不等式的解;不等式所有解的集合,叫做這個不
博源教育曾老師1378780036612
等式的解集.
4.一元一次不等式:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,系數(shù)不等于零的不等式,叫做一元一次不等式;它的標(biāo)準(zhǔn)形式是ax+b>0或ax+b<0,(a≠0).
5.一元一次不等式的解法:一元一次不等式的解法與解一元一次方程的解法類似,但一定要注意不等式性質(zhì)
3的應(yīng)用;注意:在數(shù)軸上表示不等式的解集時,要注意空圈和實點.
6.一元一次不等式組:含有相同未知數(shù)的幾個一元一次不等式所組成的不等式組,叫做一元一次不等式組;
注意:ab>0
abab0a0b0或a0b0;
amamab<0
0a0b0或a0b0;ab=0a=0或b=0;a=m.
7.一元一次不等式組的解集與解法:所有這些一元一次不等式解集的公共部分,叫做這個一元一次不等式組的解集;解一元一次不等式時,應(yīng)分別求出這個不等式組中各個不等式的解集,再利用數(shù)軸確定這個不等式組的解集.
8.一元一次不等式組的解集的四種類型:設(shè)a>b
xaxb不等式組的解集xaxb是xa不等式的組解集是xbba>ba>xaxb不等式組的解集是axbxaxb不等式組解集是空集ba>xy0x、y是正數(shù)xy0ba>,
9.幾個重要的判斷:,
xy0x、y是負(fù)數(shù)xy0xy0x、y異號且正數(shù)絕對值大,xy0-2-
xy0x、y異號且負(fù)數(shù)絕對值大xy0.博源教育曾老師1378780036613
整式的乘除
1.同底數(shù)冪的乘法:aman=am+n,底數(shù)不變,指數(shù)相加.
2.冪的乘方與積的乘方:(am)n=amn,底數(shù)不變,指數(shù)相乘;(ab)n=anbn,積的乘方等于各因式乘方的積.3.單項式的乘法:系數(shù)相乘,相同字母相乘,只在一個因式中含有的字母,連同指數(shù)寫在積里.4.單項式與多項式的乘法:m(a+b+c)=ma+mb+mc,用單項式去乘多項式的每一項,再把所得的積相加.5.多項式的乘法:(a+b)(c+d)=ac+ad+bc+bd,先用多項式的每一項去乘另一個多項式的每一項,再把所得的積相加.6.乘法公式:
(1)平方差公式:(a+b)(a-b)=a2-b2,兩個數(shù)的和與這兩個數(shù)的差的積等于這兩個數(shù)的平方差;(2)完全平方公式:
①(a+b)=a+2ab+b,兩個數(shù)和的平方,等于它們的平方和,加上它們的積的2倍;②(a-b)2=a2-2ab+b2,兩個數(shù)差的平方,等于它們的平方和,減去它們的積的2倍;③(a+b-c)2=a2+b2+c2+2ab-2ac-2bc,略.7.配方:
p(1)若二次三項式x+px+q是完全平方式,則有關(guān)系式:22
2222q;
(2)二次三項式ax2+bx+c經(jīng)過配方,總可以變?yōu)閍(x-h)2+k的形式,利用a(x-h)2+k①可以判斷ax+bx+c值的符號;②當(dāng)x=h時,可求出ax+bx+c的最大(或最。┲祂.(3)注意:x22
21x21xx22.
8.同底數(shù)冪的除法:am÷an=am-n,底數(shù)不變,指數(shù)相減.9.零指數(shù)與負(fù)指數(shù)公式:(1)a0=1(a≠0);a-n=
1an,(a≠0).注意:00,0-2無意義;
博源教育曾老師1378780036614
(2)有了負(fù)指數(shù),可用科學(xué)記數(shù)法記錄小于1的數(shù),例如:0.0000201=2.01×10-5.
10.單項式除以單項式:系數(shù)相除,相同字母相除,只在被除式中含有的字母,連同它的指數(shù)作為商的一個因式.
11.多項式除以單項式:先用多項式的每一項除以單項式,再把所得的商相加.
※12.多項式除以多項式:先因式分解后約分或豎式相除;注意:被除式-余式=除式商式.13.整式混合運算:先乘方,后乘除,最后加減,有括號先算括號內(nèi).線段、角、相交線與平行線
幾何A級概念:(要求深刻理解、熟練運用、主要用于幾何證明)
1.角平分線的定義:一條射線把一個角分成兩個相等的部分,這條射線叫角的平分線.(如圖)OA幾何表達式舉例:(1)∵OC平分∠AOBC∴∠AOC=∠BOCB(2)∵∠AOC=∠BOC∴OC是∠AOB的平分線2.線段中點的定義:幾何表達式舉例:(1)∵C是AB中點∴AC=BCCB點C把線段AB分成兩條相等的線段,點C叫線段中點.(如圖)A(2)∵AC=BC∴C是AB中點3.等量公理:(如圖)(1)等量加等量和相等;(2)等量減等量差相等;(3)等量的等倍量相等;(4)等量的等分量相等.幾何表達式舉例:(1)∵AC=DB∴AC+CD=DB+CD即AD=BC
博源教育曾老師137878003661AB5(2)∵∠AOC=∠DOB∴∠AOC-∠BOC=∠DOB-∠BOCCACDB(1)OED(2)即∠AOB=∠DOC(3)∵∠BOC=∠GFMACM又∵∠AOB=2∠BOCGOBF(3)∠EFG=2∠GFM∴∠AOB=∠EFGACBEGF(4)(4)∵AC=12AB,EG=12EF又∵AB=EF∴AC=EG4.等量代換:幾何表達式舉例:∵a=cb=c∴a=b5.補角重要性質(zhì):同角或等角的補角相等.(如圖)13幾何表達式舉例:∵a=cb=d又∵c=d∴a=b幾何表達式舉例:∵a=c+db=c+d∴a=b幾何表達式舉例:∵∠1+∠3=180°∠2+∠4=180°24又∵∠3=∠4∴∠1=∠26.余角重要性質(zhì):同角或等角的余角相等.(如圖)幾何表達式舉例:∵∠1+∠3=90°132∠2+∠4=90°又∵∠3=∠44博源教育曾老師1378780036616∴∠1=∠27.對頂角性質(zhì)定理:對頂角相等.(如圖)CAOBD幾何表達式舉例:∵∠AOC=∠DOB∴8.兩條直線垂直的定義:兩條直線相交成四個角,有一個角是直角,這兩條直線互相垂直.(如圖)AC幾何表達式舉例:(1)∵AB、CD互相垂直∴∠COB=90°BO(2)∵∠COB=90°∴AB、CD互相垂直D9.三直線平行定理:兩條直線都和第三條直線平行,那么,這兩條直線也平行.(如圖)ACEBDF幾何表達式舉例:∵AB∥EF又∵CD∥EF∴AB∥CD10.平行線判定定理:兩條直線被第三條直線所截:(1)若同位角相等,兩條直線平行;(如圖)(2)若內(nèi)錯角相等,兩條直線平行;(如圖)
-6-
幾何表達式舉例:(1)∵∠GEB=∠EFD∴AB∥CD(2)∵∠AEF=∠DFE博源教育曾老師1378780036617(3)若同旁內(nèi)角互補,兩條直線平行.(如圖)11.平行線性質(zhì)定理:ACHFEGBD∴AB∥CD(3)∵∠BEF+∠DFE=180°∴AB∥CD幾何表達式舉例:(1)∵AB∥CD(1)兩條平行線被第三條直線所截,同位角相等;(如圖)(2)兩條平行線被第三條直線所截,內(nèi)錯角相等;(如圖)(3)兩條平行線被第三條直線所截,同旁內(nèi)角互補.(如圖)ACHFEGBD∴∠GEB=∠EFD(2)∵AB∥CD∴∠AEF=∠DFE(3)∵AB∥CD∴∠BEF+∠DFE=180°幾何B級概念:(要求理解、會講、會用,主要用于填空和選擇題)
一基本概念:
直線、射線、線段、角、直角、平角、周角、銳角、鈍角、互為補角、互為余角、鄰補角、兩點間的距離、相交線、平行線、垂線段、垂足、對頂角、延長線與反向延長線、同位角、內(nèi)錯角、同旁內(nèi)角、點到直線的距離、平行線間的距離、命題、真命題、假命題、定義、公理、定理、推論、證明.二定理:
1.直線公理:過兩點有且只有一條直線.2.線段公理:兩點之間線段最短.
3.有關(guān)垂線的定理:
(1)過一點有且只有一條直線與已知直線垂直;
(2)直線外一點與直線上各點連結(jié)的所有線段中,垂線段最短.4.平行公理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行.
博源教育曾老師1378780036618
三公式:
直角=90°,平角=180°,周角=360°,1°=60′,1′=60″.四常識:
1.定義有雙向性,定理沒有.
2.直線不能延長;射線不能正向延長,但能反向延長;線段能雙向延長.
3.命題可以寫為“如果那么”的形式,“如果”是命題的條件,“那么”是命題的結(jié)論.
4.幾何畫圖要畫一般圖形,以免給題目附加沒有的條件,造成誤解.5.?dāng)?shù)射線、線段、角的個數(shù)時,應(yīng)該按順序數(shù),或分類數(shù).
6.幾何論證題可以運用“分析綜合法”、“方程分析法”、“代入分析法”、“圖形觀察法”四種方法分析.7.方向角:
西北北東北北偏西30°30°(1)(2)
西東
西南60°
南東南南偏東60°8.比例尺:比例尺1:m中,1表示圖上距離,m表示實際距離,若圖上1厘米,表示實際距離m厘米.9.幾何題的證明要用“論證法”,論證要求規(guī)范、嚴(yán)密、有依據(jù);證明的依據(jù)是學(xué)過的定義、公理、定理和推論.
友情提示:本文中關(guān)于《初一數(shù)學(xué)下學(xué)期總結(jié)》給出的范例僅供您參考拓展思維使用,初一數(shù)學(xué)下學(xué)期總結(jié):該篇文章建議您自主創(chuàng)作。
來源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問題,請聯(lián)系我們及時刪除。