王牌对王牌第一季综艺,黄视频在线观看网站,世界一级毛片,成人黄色免费看

薈聚奇文、博采眾長、見賢思齊
當前位置:公文素材庫 > 計劃總結 > 工作總結 > 高中數(shù)學必修3知識點總結

高中數(shù)學必修3知識點總結

網(wǎng)站:公文素材庫 | 時間:2019-05-28 15:00:24 | 移動端:高中數(shù)學必修3知識點總結

高中數(shù)學必修3知識點總結

高中數(shù)學必修3知識點

第一章算法初步

1.1.1

算法的概念

1、算法概念:2.算法的特點:(1)有限性;(2)確定性;(3)順序性與正確性;(4)不唯一性;(5)普遍性;1.1.2

程序框圖

(一)構成程序框的圖形符號及其作用

(二)、算法的三種基本邏輯結構:順序結構、條件結構、循環(huán)結構。1、順序結構:如在示意圖中,A框和B框是依次執(zhí)行的,只有在執(zhí)行完A框指定的操作后,才能接著執(zhí)行B框所指定的操作。2、條件結構:

條件結構是依據(jù)指定條件選擇執(zhí)行不同指令的控制結構。依據(jù)條件P是否成立而選擇執(zhí)行A框或B框。無論P條件是否成立,只能執(zhí)行A框或B框之一,不可能同時執(zhí)行A框和B框,也不可能A框、B框都不執(zhí)行。一個判斷結構可以有多個判斷框。

3、循環(huán)結構:在一些算法中,經(jīng)常會出現(xiàn)從某處開始,按照一定條件,反復執(zhí)行某一處理步驟的情況,這就是循環(huán)結構,反復執(zhí)行的處理步驟為循環(huán)體,顯然,循環(huán)結構中一定包含條件結構。1.2.1

輸入、輸出語句和賦值語句

AB1、輸入語句一般格式

Input“提示內(nèi)容”;變量Print“提示內(nèi)容”;表達式2、輸出語句:一般格式3、賦值語句(1)賦值語句的一般格式變量=表達式(2)賦值語句的作用是將表達式所代表的值賦給變量;(3)賦值語句中的“=”稱作賦值號,與數(shù)學中的等號的意義是不同的。賦值號的左右兩邊不能對換,它將賦值號右邊的表達式的值賦給賦值號左邊的變量;(4)賦值語句左邊只能是變量名字,而不是表達式,右邊表達式可以是一個數(shù)據(jù)、常量或算式;(5)對于一個變量可以多次賦值。1.2.2條件語句

1、條件語句的一般格式:IF語句的一般格式為圖1,對應的程序框圖為圖2。

if表達式語句序列1;else語句序列2;圖1圖2

1

否滿足條件?是語句1語句2

end必修三IF語句的最簡單格式為圖3,對應的程序框圖為圖4。

1.2.3循環(huán)語句

循環(huán)結構是由循環(huán)語句來實現(xiàn)的。一般程序設計語言中有兩種語句結構。即for語句和while語句。1、當型循環(huán)while語句

(1)while語句的一般格式是對應的程序框圖是while條件

循環(huán)體滿足條件?wend

(2)2、直到型循環(huán)untile語句

for語句的一般格式是對應的程序框圖是

if條件then語句序列1else語句序列2end(圖4)否(圖3)

滿足條件?是語句循環(huán)體是循環(huán)體do循環(huán)體;Loopuntil條件滿足條件?是否

1.3.1輾轉相除法與更相減損術

1、輾轉相除法。用較大的數(shù)除以較小的數(shù)所得的余數(shù)和較小的數(shù)構成新的一對數(shù),繼續(xù)做上面的除法,直到大數(shù)被小數(shù)除盡,這個較小的數(shù)就是最大公約數(shù)。

2、更相減損術。以較大的數(shù)減去較小的數(shù),接著把較小的數(shù)與所得的差比較,并以大數(shù)減小數(shù)。繼續(xù)這個操作,直到所得的數(shù)相等為止,則這個數(shù)(等數(shù))就是所求的最大公約數(shù)。1.3.2秦九韶算法與排序

1、秦九韶算法概念:f(x)=anxn+an-1xn-1+….+a1x+a0求值問題

f(x)=anxn+an-1xn-1+….+a1x+a0=(anxn-1+an-1xn-2+….+a1)x+a0=((anxn-2+an-1xn-3+….+a2)x+a1)x+a0

=......=(...(anx+an-1)x+an-2)x+...+a1)x+a0

求多項式的值時,首先計算最內(nèi)層括號內(nèi)依次多項式的值,即v1=anx+an-1

然后由內(nèi)向外逐層計算一次多項式的值,即v2=v1x+an-2v3=v2x+an-3......vn=vn-1x+a0這樣,把n次多項式的求值問題轉化成求n個一次多項式的值的問題。

必修三

1.3.3進位制

(1)以k為基數(shù)的k進制換算為十進制:anan1a1a0(k)ankan1k(2)十進制換算為k進制:除以k取余,倒序排列

nn1a1kn1a0k

0第二章統(tǒng)計

2.1.1簡單隨機抽樣

1.總體和樣本,個體,樣本容量

2.簡單隨機抽樣:從元素個數(shù)為N的總體中不放回地抽取容量為n樣本,如果每一次抽取時總體中的各個個體有相同的的可能性被抽到。

3.簡單隨機抽樣常用的方法:(1)抽簽法;⑵隨機數(shù)表法;2.1.2系統(tǒng)抽樣

1.系統(tǒng)抽樣(等距抽樣或機械抽樣):當總體元素個數(shù)很大時,可將總體分成均衡的若干部分,然后按照預先制定的規(guī)則,從每一部分抽取一個個體,得到所需要的樣本。2.1.3分層抽樣

1.分層抽樣:當總體由明顯差異的幾部分組成時,將總體中各個個體按某種特征分層,在各層中按層在總體中所占比例進行簡單隨機抽樣或系統(tǒng)抽樣。三種抽樣方法的區(qū)別和聯(lián)系:

類別簡單隨機抽樣共同點各自特點從總體中逐個抽取將總體分成均衡的在起始部分抽樣幾部分,按事先制系統(tǒng)抽樣抽樣過程中每個個定的規(guī)則在各部分體被抽到的機會相抽取等將總體按某種特征分層抽樣分成幾層,分層進行抽取2.2.1用樣本的頻率分布估計總體的分布1、列頻率分布表,畫頻率分布直方圖:

(1)計算極差(2)決定組數(shù)和組距(3)決定分點(4)列頻率分布表(5)畫頻率分布直方圖2、莖葉圖

2.2.2用樣本的數(shù)字特征估計總體的數(shù)字特征1、平均值:xx1x2xnn相互聯(lián)系最基本的抽樣方法適用范圍總體容量較小時時,采用簡單隨機抽樣各層抽樣時可采用總體容量較大時總體由差異明顯的簡單隨機抽樣或系幾部分組成時統(tǒng)抽樣

必修三2、.樣本標準差:ss2(x1x)(x2x)(xnx)n222

3、(1)如果把一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個共同的常數(shù),標準差不變(2)如果把一組數(shù)據(jù)中的每一個數(shù)據(jù)乘以一個共同的常數(shù)k,標準差變?yōu)樵瓉淼膋倍2.3.2兩個變量的線性相關

n1、概念:(1)回歸直線方程:yabx(2)回歸系數(shù):bi1xiyinxyni1xinx22,aybx

2.應用直線回歸的注意事項:回歸分析前,最好先作出散點圖;

第三章概率

3.1.13.1.2隨機事件的概率及概率的意義1、基本概念:

(1)必然事件(2)不可能事件(3)確定事件(4)隨機事件

(5)頻數(shù)與頻率:在相同的條件S下重復n次試驗,觀察某一事件A是否出現(xiàn),稱n次試驗中事件A出

nA現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例fn(A)=n為事件A出現(xiàn)的頻率:對于給定的隨機事件A,在n次重復進行的實驗中,時間A發(fā)生的頻率,當n很大時,總是在某個常數(shù)附近擺動,隨著n的增加,擺動幅度越來越小,這時就把這個常數(shù)叫做事件A的概率

nA(6)頻率與概率的區(qū)別與聯(lián)系:隨機事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗總次數(shù)n的比值n,它具有一定的穩(wěn)定性,總在某個常數(shù)附近擺動,且隨著試驗次數(shù)的不斷增多,這種擺動幅度越來越小。我們把這個常數(shù)叫做隨機事件的概率,概率從數(shù)量上反映了隨機事件發(fā)生的可能性的大小。頻率在大量重復試驗的前提下可以近似地作為這個事件的概率3.1.3概率的基本性質(zhì)1、基本概念:

(2)若A∩B為不可能事件,即A∩B=ф,即不可能同時發(fā)生的兩個事件,那么稱事件A與事件B互斥;(3)若A∩B為不可能事件,A∪B為必然事件,即不能同時發(fā)生且必有一個發(fā)生的兩個事件,那么稱事

件A與事件B互為對立事件;

概率加法公式:當事件A與B互斥時,滿足加法公式:P(A∪B)=P(A)+P(B);若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1P(B)2、概率的基本性質(zhì):

1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;2)當事件A與B互斥時,滿足加法公式:P(A∪B)=P(A)+P(B);

必修三

3)若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1P(B);

4)互斥事件與對立事件的區(qū)別與聯(lián)系,互斥事件是指事件A與事件B在一次試驗中不會同時發(fā)生,其具體包括三種不同的情形:(1)事件A發(fā)生且事件B不發(fā)生;(2)事件A不發(fā)生且事件B發(fā)生;(3)事件A與事件B同時不發(fā)生,而對立事件是指事件A

與事件B有且僅有一個發(fā)生,其包括兩種情

形;(1)事件A發(fā)生B不發(fā)生;(2)事件B發(fā)生事件A不發(fā)生,對立事件互斥事件的特殊情形。3.2.13.2.2古典概型及隨機數(shù)的產(chǎn)生

1、(1)古典概型的使用條件:試驗結果的有限性和所有結果的等可能性。(2)古典概型的解題步驟;

①求出總的基本事件數(shù);②求出事件A所包含的基本事件數(shù),然后利用公式P(A)=3.3.13.3.2幾何概型基本概念:

(1)幾何概率模型:如果每個事件發(fā)生的概率只與構成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型;(2)幾何概型的概率公式:P(A)=

構成事件A的區(qū)域長度(面積或體積)積)A包含的基本事件數(shù)總的基本事件個數(shù)

試驗的全部結果所構成的區(qū)域長度(面積或體;

(3)幾何概型的特點:1)試驗中所有可能出現(xiàn)的結果(基本事件)有無限多個;2)每個基本事件出現(xiàn)的可能性相等.

必修三

擴展閱讀:高中數(shù)學必修3知識點總結

高中數(shù)學必修3知識點

第一章算法初步

1.1.1

算法的概念

1、算法概念:

在數(shù)學上,現(xiàn)代意義上的“算法”通常是指可以用計算機來解決的某一類問題是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內(nèi)完成.2.算法的特點:

(1)有限性:一個算法的步驟序列是有限的,必須在有限操作之后停止,不能是無限的.(2)確定性:算法中的每一步應該是確定的并且能有效地執(zhí)行且得到確定的結果,而不應當是模棱兩可.

(3)順序性與正確性:算法從初始步驟開始,分為若干明確的步驟,每一個步驟只能有一個確定的后繼步驟,前一步是后一步的前提,只有執(zhí)行完前一步才能進行下一步,并且每一步都準確無誤,才能完成問題.

(4)不唯一性:求解某一個問題的解法不一定是唯一的,對于一個問題可以有不同的算法.(5)普遍性:很多具體的問題,都可以設計合理的算法去解決,如心算、計算器計算都要經(jīng)過有限、事先設計好的步驟加以解決.1.1.2

程序框圖

1、程序框圖基本概念:

(一)程序構圖的概念:程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準確、直觀地表示算法的圖形。

一個程序框圖包括以下幾部分:表示相應操作的程序框;帶箭頭的流程線;程序框外必要文字說明。

(二)構成程序框的圖形符號及其作用

程序框起止框輸入、輸出框處理框法中任何需要輸入、輸出的位置。賦值、計算,算法中處理數(shù)據(jù)需要的算式、公式等分別寫在不同的用以處理數(shù)據(jù)的處理框內(nèi)。判斷某一條件是否成立,成立時在出口處標判斷框明“是”或“Y”;不成立時標明“否”或“N”。不可少的。表示一個算法輸入和輸出的信息,可用在算名稱功能表示一個算法的起始和結束,是任何流程圖學習這部分知識的時候,要掌握各個圖形的形狀、作用及使用規(guī)則,畫程序框圖的規(guī)則如下:1、使用標準的圖形符號。2、框圖一般按從上到下、從左到右的方向畫。3、除判斷框外,大多數(shù)流程圖符號只有一個進入點和一個退出點。判斷框具有超過一個退出點的唯一符號。4、判斷框分兩大類,一類判斷框“是”與“否”兩分支的判斷,而且有且僅有兩個結果;另一類是多分支判斷,有幾種不同的結果。5、在圖形符號內(nèi)描述的語言要非常簡練清楚。(三)、算法的三種基本邏輯結構:順序結構、條件結構、循環(huán)結構。

1、順序結構:順序結構是最簡單的算法結構,語句與語句之間,框與框之間是按從上到下的順序進行的,它是由若干個依次執(zhí)行的處理步驟組成的,它是任何一個算法都離不開的一種基本算法結構。

順序結構在程序框圖中的體現(xiàn)就是用流程線將程序框自上而下地連接起來,按順序執(zhí)行算法步驟。如在示意圖中,A框和B框是依次執(zhí)行的,只有在執(zhí)行完A框指定的操作后,才能接著執(zhí)行B框所指定的操作。2、條件結構:

AB條件結構是指在算法中通過對條件的判斷根據(jù)條件是否成立而選擇不同流向的算法結構。

條件P是否成立而選擇執(zhí)行A框或B框。無論P條件是否成立,只能執(zhí)行A框或B框之一,不可能同時執(zhí)行A框和B框,也不可能A框、B框都不執(zhí)行。一個判斷結構可以有多個判斷框。

3、循環(huán)結構:在一些算法中,經(jīng)常會出現(xiàn)從某處開始,按照一定條件,反復執(zhí)行某一處理步驟的情況,這就是循環(huán)結構,反復執(zhí)行的處理步驟為循環(huán)體,顯然,循環(huán)結構中一定包含條件結構。循環(huán)結構又稱重復結構,循環(huán)結構可細分為兩類:

(1)、一類是當型循環(huán)結構,如下左圖所示,它的功能是當給定的條件P成立時,執(zhí)行A框,A框執(zhí)行完畢后,再判斷條件P是否成立,如果仍然成立,再執(zhí)行A框,如此反復執(zhí)行A框,直到某一次條件P不成立為止,此時不再執(zhí)行A框,離開循環(huán)結構。

(2)、另一類是直到型循環(huán)結構,如下右圖所示,它的功能是先執(zhí)行,然后判斷給定的條件P是否成立,如果P仍然不成立,則繼續(xù)執(zhí)行A框,直到某一次給定的條件P成立為止,此時不再執(zhí)行A框,離開循環(huán)結構。

AAPP成立成立不成立不成立p

當型循環(huán)結構直到型循環(huán)結構

注意:1循環(huán)結構要在某個條件下終止循環(huán),這就需要條件結構來判斷。因此,循環(huán)結構中一定包含條件結構,但不允許“死循環(huán)”。2在循環(huán)結構中都有一個計數(shù)變量和累加變量。計數(shù)變量用于記錄循環(huán)次數(shù),累加變量用于輸出結果。計數(shù)變量和累加變量一般是同步......執(zhí)行的,累加一次,計數(shù)一次。1.2.1

輸入、輸出語句和賦值語句1、輸入語句

(1)輸入語句的一般格式

圖形計算器格式INPUT“提示內(nèi)容”;變量INPUT“提示內(nèi)容”,變量(2)輸入語句的作用是實現(xiàn)算法的輸入信息功能;(3)“提示內(nèi)容”提示用戶輸入什么樣的信息,變量是指程序在運行時其值是可以變化的量;(4)輸入語句要求輸入的值只能是具體的常數(shù),不能是函數(shù)、變量或表達式;(5)提示內(nèi)容與變量之間用分號“;”隔開,若輸入多個變量,變量與變量之間用逗號“,”隔開。2、輸出語句

(1)輸出語句的一般格式

圖形計算器格式PRINT“提示內(nèi)容”;表達式Disp“提示內(nèi)容”,變量(2)輸出語句的作用是實現(xiàn)算法的輸出結果功能;(3)“提示內(nèi)容”提示用戶輸入什么樣的信息,表達式是指程序要輸出的數(shù)據(jù);(4)輸出語句可以輸出常量、變量或表達式的值以及字符。3、賦值語句

(1)賦值語句的一般格式

(2)賦值語句的作用是將表達式所代表的值賦給變量;(3)賦值語句中的“=”稱作賦值號,與數(shù)學中的等號的意義是不同的。賦值號的左右兩邊不能對換,它將賦值號右邊的表達式的值賦給賦值號左邊的變量;(4)賦值語句左邊只能是變量名字,而不是表達式,右邊表達式可以是一個數(shù)據(jù)、常量或算式;(5)對于一個變量可以多次賦值。

注意:①賦值號左邊只能是變量名字,而不能是表達式。如:2=X是錯誤的。②賦值號左

右不能對換。如“A=B”“B=A”的含義運行結果是不同的。③不能利用賦值語句進行代數(shù)式的演算。(如化簡、因式分解、解方程等)④賦值號“=”與數(shù)學中的等號意義不同。

1.2.2條件語句

1、條件語句的一般格式有兩種:(1)IFTHENELSE語句;(2)IFTHEN語句。2、IFTHENELSE語句

IFTHENELSE語句的一般格式為圖1,對應的程序框圖為圖2。

圖形計算器變量=表達式格式表達式變量IF條件THEN語句1ELSE語句2ENDIF滿足條件?是語句1否語句

圖1圖2

分析:在IFTHENELSE語句中,“條件”表示判斷的條件,“語句1”表示滿足條件時執(zhí)行的操作內(nèi)容;“語句2”表示不滿足條件時執(zhí)行的操作內(nèi)容;ENDIF表示條件語句的結束。計算機在執(zhí)行時,首先對IF后的條件進行判斷,如果條件符合,則執(zhí)行THEN后面的語句1;若條件不符合,則執(zhí)行ELSE后面的語句2。3、IFTHEN語句

IFTHEN語句的一般格式為圖3,對應的程序框圖為圖4。IF條件THEN語句ENDIF(圖3)

是滿足條件?否(圖4)執(zhí)行的操語句注意:“條件”表示判斷的條件;“語句”表示滿足條件時

作內(nèi)容,條件不滿足時,結束程序;ENDIF表示條件語句的結束。計算機在執(zhí)行時首先對IF后的條件進行判斷,如果條件符合就執(zhí)行THEN后邊的語句,若條件不符合則直接結束該條件語句,轉而執(zhí)行其它語句。

1.2.3循環(huán)語句

循環(huán)結構是由循環(huán)語句來實現(xiàn)的。對應于程序框圖中的兩種循環(huán)結構,一般程序設計語言中也有當型(WHILE型)和直到型(UNTIL型)兩種語句結構。即WHILE語句和UNTIL語句。

1、WHILE語句

(1)WHILE語句的一般格式是對應的程序框圖是

循環(huán)體WHILE條件循環(huán)體WEND滿足條件?否是(2)當計算機遇到WHILE語句時,先判斷條件的真假,如果條件符合,就執(zhí)行WHILE與WEND之間的循環(huán)體;然后再檢查上述條件,如果條件仍符合,再次執(zhí)行循環(huán)體,這個過程反復進行,直到某一次條件不符合為止。這時,計算機將不執(zhí)行循環(huán)體,直接跳到WEND語句后,接著執(zhí)行WEND之后的語句。因此,當型循環(huán)有時也稱為“前測試型”循環(huán)。2、UNTIL語句

(1)UNTIL語句的一般格式是對應的程序框圖是

DO循環(huán)體LOOPUNTIL條件循環(huán)體滿足條件?是否(2)直到型循環(huán)又稱為“后測試型”循環(huán),從UNTIL型循環(huán)結構分析,計算機執(zhí)行該語句時,先執(zhí)行一次循環(huán)體,然后進行條件的判斷,如果條件不滿足,繼續(xù)返回執(zhí)行循環(huán)體,然后再進行條件的判斷,這個過程反復進行,直到某一次條件滿足時,不再執(zhí)行循環(huán)體,跳到LOOPUNTIL語句后執(zhí)行其他語句,是先執(zhí)行循環(huán)體后進行條件判斷的循環(huán)語句。分析:當型循環(huán)與直到型循環(huán)的區(qū)別:(先由學生討論再歸納)(1)當型循環(huán)先判斷后執(zhí)行,直到型循環(huán)先執(zhí)行后判斷;

在WHILE語句中,是當條件滿足時執(zhí)行循環(huán)體,在UNTIL語句中,是當條件不滿足時執(zhí)行循環(huán)

1.3.1輾轉相除法與更相減損術

1、輾轉相除法。也叫歐幾里德算法,用輾轉相除法求最大公約數(shù)的步驟如下:(1):用較大的數(shù)m除以較小的數(shù)n得到一個商為m,n的最大公約數(shù);若(3):若商

S2R1R0S0和一個余數(shù)

R0R0;(2):若

S1R0=0,則n

R1≠0,則用除數(shù)n除以余數(shù)

R1得到一個商

R0和一個余數(shù)

R1;

=0,則

R2R1為m,n的最大公約數(shù);若≠0,則用除數(shù)除以余數(shù)

Rn1得到一個

和一個余數(shù);依次計算直至

Rn=0,此時所得到的即為所求的最

大公約數(shù)。2、更相減損術

我國早期也有求最大公約數(shù)問題的算法,就是更相減損術。在《九章算術》中有更相減損術求最大公約數(shù)的步驟:可半者半之,不可半者,副置分母子之數(shù),以少減多,更相減損,求其等也,以等數(shù)約之。

翻譯為:(1):任意給出兩個正數(shù);判斷它們是否都是偶數(shù)。若是,用2約簡;若不是,執(zhí)行第二步。(2):以較大的數(shù)減去較小的數(shù),接著把較小的數(shù)與所得的差比較,并以大數(shù)減小數(shù)。繼續(xù)這個操作,直到所得的數(shù)相等為止,則這個數(shù)(等數(shù))就是所求的最大公約數(shù)。例2用更相減損術求98與63的最大公約數(shù).分析:(略)

3、輾轉相除法與更相減損術的區(qū)別:

(1)都是求最大公約數(shù)的方法,計算上輾轉相除法以除法為主,更相減損術以減法為主,計算次數(shù)上輾轉相除法計算次數(shù)相對較少,特別當兩個數(shù)字大小區(qū)別較大時計算次數(shù)的區(qū)別較明顯。

(2)從結果體現(xiàn)形式來看,輾轉相除法體現(xiàn)結果是以相除余數(shù)為0則得到,而更相減損術

則以減數(shù)與差相等而得到

1.3.2秦九韶算法與排序1、秦九韶算法概念:

f(x)=anxn+an-1xn-1+….+a1x+a0求值問題

f(x)=anxn+an-1xn-1+….+a1x+a0=(anxn-1+an-1xn-2+….+a1)x+a0=((anxn-2+an-1xn-3+….+a2)x+a1)x+a0

=......=(...(anx+an-1)x+an-2)x+...+a1)x+a0

求多項式的值時,首先計算最內(nèi)層括號內(nèi)依次多項式的值,即v1=anx+an-1然后由內(nèi)向外逐層計算一次多項式的值,即

v2=v1x+an-2v3=v2x+an-3......vn=vn-1x+a0、

這樣,把n次多項式的求值問題轉化成求n個一次多項式的值的問題。2、兩種排序方法:直接插入排序和冒泡排序1、直接插入排序

基本思想:插入排序的思想就是讀一個,排一個。將第1個數(shù)放入數(shù)組的第1個元素中,以后讀入的數(shù)與已存入數(shù)組的數(shù)進行比較,確定它在從大到小的排列中應處的位置.將該位置以及以后的元素向后推移一個位置,將讀入的新數(shù)填入空出的位置中.(由于算法簡單,可以舉例說明)2、冒泡排序

基本思想:依次比較相鄰的兩個數(shù),把大的放前面,小的放后面.即首先比較第1個數(shù)和第2個數(shù),大數(shù)放前,小數(shù)放后.然后比較第2個數(shù)和第3個數(shù)......直到比較最后兩個數(shù).第一趟結束,最小的一定沉到最后.重復上過程,仍從第1個數(shù)開始,到最后第2個數(shù)......由于在排序過程中總是大數(shù)往前,小數(shù)往后,相當氣泡上升,所以叫冒泡排序.

1.3.3進位制1、概念:進位制是一種記數(shù)方式,用有限的數(shù)字在不同的位置表示不同的數(shù)值?墒褂脭(shù)字符號的個數(shù)稱為基數(shù),基數(shù)為n,即可稱n進位制,簡稱n進制,F(xiàn)在最常用的是十進制,通常使用10個阿拉伯數(shù)字0-9進行記數(shù)。對于任何一個數(shù),我們可以用不同的進位制來表示。比如:十進數(shù)57,可以用二進制表示為111001,也可以用八進制表示為71、用十六進制表示為39,它們所代表的數(shù)值都是一樣的。

一般地,若k是一個大于一的整數(shù),那么以k為基數(shù)的k進制可以表示為:

anan1...a1a0(k)(0ank,0an1,...,a1,a0k),

而表示各種進位制數(shù)一般在數(shù)字右下腳加注來表示,如111001(2)表示二進制數(shù),34(5)表示5進制數(shù)

第二章統(tǒng)計

2.1.1簡單隨機抽樣

1.總體和樣本

總體:在統(tǒng)計學中,把研究對象的全體叫做總體.個體:把每個研究對象叫做個體.

總體容量:把總體中個體的總數(shù)叫做總體容量.

為了研究總體的有關性質(zhì),一般從總體中隨機抽取一部分:研究,我們稱它為樣本.其中個體的個數(shù)稱為樣本容量。......

2.簡單隨機抽樣,也叫純隨機抽樣。就是從總體中不加任何分組、劃類、排隊等,完全隨機地抽取調(diào)查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關聯(lián)性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎。通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。3.簡單隨機抽樣常用的方法:

(1)抽簽法;⑵隨機數(shù)表法;⑶計算機模擬法;⑷使用統(tǒng)計軟件直接抽取。

在簡單隨機抽樣的樣本容量設計中,主要考慮:①總體變異情況;②允許誤差范圍;③概率保證程度。

4.抽簽法:

(1)給調(diào)查對象群體中的每一個對象編號;(2)準備抽簽的工具,實施抽簽

,,,

(3)對樣本中的每一個個體進行測量或調(diào)查

例:請調(diào)查你所在的學校的學生做喜歡的體育活動情況。5.隨機數(shù)表法:

例:利用隨機數(shù)表在所在的班級中抽取10位同學參加某項活動。

2.1.2系統(tǒng)抽樣

1.系統(tǒng)抽樣(等距抽樣或機械抽樣):

把總體的單位進行排序,再計算出抽樣距離,然后按照這一固定的抽樣距離抽取樣本。第一個樣本采用簡單隨機抽樣的辦法抽取。

K(抽樣距離)=N(總體規(guī)模)/n(樣本規(guī)模)

前提條件:總體中個體的排列對于研究的變量來說,應是隨機的,即不存在某種與研究變量相關的規(guī)則分布?梢栽谡{(diào)查允許的條件下,從不同的樣本開始抽樣,對比幾次樣本的特點。如果有明顯差別,說明樣本在總體中的分布承某種循環(huán)性規(guī)律,且這種循環(huán)和抽樣距離重合。

2.系統(tǒng)抽樣,即等距抽樣是實際中最為常用的抽樣方法之一。因為它對抽樣框的要求較低,實施也比較簡單。更為重要的是,如果有某種與調(diào)查指標相關的輔助變量可供使用,總體單元按輔助變量的大小順序排隊的話,使用系統(tǒng)抽樣可以大大提高估計精度。

2.1.3分層抽樣

1.分層抽樣(類型抽樣):

先將總體中的所有單位按照某種特征或標志(性別、年齡等)劃分成若干類型或?qū)哟危缓笤僭诟鱾類型或?qū)哟沃胁捎煤唵坞S機抽樣或系用抽樣的辦法抽取一個子樣本,最后,將這些子樣本合起來構成總體的樣本。

兩種方法:

1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。

2.分層抽樣是把異質(zhì)性較強的總體分成一個個同質(zhì)性較強的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進而代表總體。

分層標準:","2.3.2兩個變量的線性相關1、概念:

","p":{"h":16.947,"w":3.937,"x":166.717,"y":200.4,"z":11},"ps":null,"nAfn(A)=n為事件A出現(xiàn)的概率:對于給定的隨機事件A,如果隨著試驗次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個常數(shù)上,把這個常數(shù)記作P(A),稱為事件A的概率。

(6)頻率與概率的區(qū)別與聯(lián)系:隨機事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗總次數(shù)n

nA的比值n,它具有一定的穩(wěn)定性,總在某個常數(shù)附近擺動,且隨著試驗次數(shù)的不斷增多,這種擺動幅度越來越小。我們把這個常數(shù)叫做隨機事件的概率,概率從數(shù)量上反映了隨機事件發(fā)生的可能性的大小。頻率在大量重復試驗的前提下可以近似地作為這個事件的概率

3.1.3概率的基本性質(zhì)

1、基本概念:

(1)事件的包含、并事件、交事件、相等事件

(2)若A∩B為不可能事件,即A∩B=ф,那么稱事件A與事件B互斥;

(3)若A∩B為不可能事件,A∪B為必然事件,那么稱事件A與事件B互為對立事件;(4)當事件A與B互斥時,滿足加法公式:P(A∪B)=P(A)+P(B);若事件A與B為對立

事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1P(B)

2、概率的基本性質(zhì):

1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;2)當事件A與B互斥時,滿足加法公式:P(A∪B)=P(A)+P(B);

3)若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1P(B);

4)互斥事件與對立事件的區(qū)別與聯(lián)系,互斥事件是指事件A與事件B在一次試驗中不會同時發(fā)生,其具體包括三種不同的情形:(1)事件A發(fā)生且事件B不發(fā)生;(2)事件A不發(fā)生且事件B發(fā)生;(3)事件A與事件B同時不發(fā)生,而對立事件是指事件A與事件B有且僅有一個發(fā)生,其包括兩種情形;(1)事件A發(fā)生B不發(fā)生;(2)事件B發(fā)生事件A不發(fā)生,對立事件互斥事件的特殊情形。3.2.13.2.2古典概型及隨機數(shù)的產(chǎn)生

1、(1)古典概型的使用條件:試驗結果的有限性和所有結果的等可能性。(2)古典概型的解題步驟;①求出總的基本事件數(shù);

A包含的基本事件數(shù)②求出事件A所包含的基本事件數(shù),然后利用公式P(A)=總的基本事件個數(shù)

3.3.13.3.2幾何概型及均勻隨機數(shù)的產(chǎn)生

1、基本概念:

(1)幾何概率模型:如果每個事件發(fā)生的概率只與構成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型;(2)幾何概型的概率公式:

構成事件A的區(qū)域長度(面積或體積)積);

P(A)=試驗的全部結果所構成的區(qū)域長度(面積或體(3)幾何概型的特點:1)試驗中所有可能出現(xiàn)的結果(基本事件)有無限多個;2)每個基本事件出現(xiàn)的可能性相等.

友情提示:本文中關于《高中數(shù)學必修3知識點總結》給出的范例僅供您參考拓展思維使用,高中數(shù)學必修3知識點總結:該篇文章建議您自主創(chuàng)作。

來源:網(wǎng)絡整理 免責聲明:本文僅限學習分享,如產(chǎn)生版權問題,請聯(lián)系我們及時刪除。


高中數(shù)學必修3知識點總結》由互聯(lián)網(wǎng)用戶整理提供,轉載分享請保留原作者信息,謝謝!
鏈接地址:http://m.taixiivf.com/gongwen/588046.html