王牌对王牌第一季综艺,黄视频在线观看网站,世界一级毛片,成人黄色免费看

薈聚奇文、博采眾長、見賢思齊
當(dāng)前位置:公文素材庫 > 公文素材 > 范文素材 > 高中數(shù)學(xué)選修2-2,2-3知識(shí)點(diǎn)、考點(diǎn)、典型例題

高中數(shù)學(xué)選修2-2,2-3知識(shí)點(diǎn)、考點(diǎn)、典型例題

網(wǎng)站:公文素材庫 | 時(shí)間:2019-05-28 15:02:28 | 移動(dòng)端:高中數(shù)學(xué)選修2-2,2-3知識(shí)點(diǎn)、考點(diǎn)、典型例題

高中數(shù)學(xué)選修2-2,2-3知識(shí)點(diǎn)、考點(diǎn)、典型例題

高中數(shù)學(xué)選修2----2知識(shí)點(diǎn)

第一章導(dǎo)數(shù)及其應(yīng)用知識(shí)點(diǎn):

一.導(dǎo)數(shù)概念的引入

1.導(dǎo)數(shù)的物理意義:瞬時(shí)速率。一般的,函數(shù)yf(x)在xxf(x0x)f(x0)0處的瞬時(shí)變化率是limx0x,

我們稱它為函數(shù)yf(x)在xx0處的導(dǎo)數(shù),記作f(x0)或y|xx0,即f(xf(x0x)f(x0)0)=limx0x

2.導(dǎo)數(shù)的幾何意義:曲線的切線.通過圖像,我們可以看出當(dāng)點(diǎn)Pn趨近于

P時(shí),直線PT與曲線相切。容易知道,割線PPf(xn)f(x0)n的斜率是knx,當(dāng)點(diǎn)Pn趨近于

P時(shí),函數(shù)yf(x)在xx0處的導(dǎo)數(shù)就是切線PT的nx0斜率k,即kf(xn)f(x0)limx0xf(x0)

nx03.導(dǎo)函數(shù):當(dāng)x變化時(shí),f(x)便是x的一個(gè)函數(shù),我們稱它為f(x)的導(dǎo)函數(shù).yf(x)的導(dǎo)函數(shù)有時(shí)也記作y,

即f(x)f(xx)f(x)limx0x

考點(diǎn):無知識(shí)點(diǎn):

二.導(dǎo)數(shù)的計(jì)算

1)基本初等函數(shù)的導(dǎo)數(shù)公式:

1若f(x)c(c為常數(shù)),則f(x)0;2若f(x)x,則f(x)x1;

3若f(x)sinx,則f(x)cosx4若f(x)cosx,則f(x)sinx;5若f(x)ax,則f(x)axlna6若f(x)ex,則f(x)ex

7若f(x)logxa,則f(x)1xlna

8若f(x)lnx,則f(x)1x2)導(dǎo)數(shù)的運(yùn)算法則

1.[f(x)g(x)]f(x)g(x)

2.[f(x)g(x)]f(x)g(x)f(x)g(x)

3.[f(x)f(x)g(x)f(x)g(x)g(x)][g(x)]23)復(fù)合函數(shù)求導(dǎo)

yf(u)和ug(x),稱則y可以表示成為x的函數(shù),即yf(g(x))為一個(gè)復(fù)合函數(shù)yf(g(x))g(x)

考點(diǎn):導(dǎo)數(shù)的求導(dǎo)及運(yùn)算

★1、已知

fxx22xsin,則f"0

★2、若fxexsinx,則f"x★3.f(x)=ax3+3x2+2,

f(1)4,則a=()

A.10193B.133C.163D.3★★4.過拋物線y=x2上的點(diǎn)M(1,124)的切線的傾斜角是()A.30°B.45°C.60°D.90°

★★5.如果曲線y92x23與y2x3在xx0處的切線互相垂直,則x0=三.導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用

知識(shí)點(diǎn):

1.函數(shù)的單調(diào)性與導(dǎo)數(shù):

一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系:

在某個(gè)區(qū)間(a,b)內(nèi),如果f(x)0,那么函數(shù)yf(x)在這個(gè)區(qū)間單調(diào)遞增;如果f(x)0,那么函數(shù)yf(x)在這個(gè)區(qū)間單調(diào)遞減.2.函數(shù)的極值與導(dǎo)數(shù)

極值反映的是函數(shù)在某一點(diǎn)附近的大小情況.求函數(shù)yf(x)的極值的方法是:

(1)如果在x0附近的左側(cè)f(x)0,右側(cè)f(x)0,那么f(x0)是極大值;(2)如果在x0附近的左側(cè)f(x)0,右側(cè)f(x)0,那么f(x0)是極小值;4.函數(shù)的最大(小)值與導(dǎo)數(shù)

函數(shù)極大值與最大值之間的關(guān)系.

求函數(shù)yf(x)在[a,b]上的最大值與最小值的步驟(1)求函數(shù)yf(x)在(a,b)內(nèi)的極值;

(2)將函數(shù)yf(x)的各極值與端點(diǎn)處的函數(shù)值f(a),f(b)比較,其中最大的是一個(gè)最大值,最小的是最小值.

四.生活中的優(yōu)化問題

利用導(dǎo)數(shù)的知識(shí),,求函數(shù)的最大(小)值,從而解決實(shí)際問題

考點(diǎn):1、導(dǎo)數(shù)在切線方程中的應(yīng)用

2、導(dǎo)數(shù)在單調(diào)性中的應(yīng)用

3、導(dǎo)數(shù)在極值、最值中的應(yīng)用4、導(dǎo)數(shù)在恒成立問題中的應(yīng)用一、題型一:導(dǎo)數(shù)在切線方程中的運(yùn)用

★1.曲線yx3在P點(diǎn)處的切線斜率為k,若k=3,則P點(diǎn)為()A.(-2,-8)B.(-1,-1)或(1,1)

11C.(2,8)D.(-2,-8)

★2.曲線y13x3x25,過其上橫坐標(biāo)為1的點(diǎn)作曲線的切線,則切線的傾斜角為()3A.6B.4C.3D.4

二、題型二:導(dǎo)數(shù)在單調(diào)性中的運(yùn)用

★1.(05廣東卷)函數(shù)f(x)x33x21是減函數(shù)的區(qū)間為()A.(2,)B.(,2)C.(,0)D.(0,2)

★2.關(guān)于函數(shù)

f(x)2x36x27,下列說法不正確的是()A.在區(qū)間(,0)內(nèi),f(x)為增函數(shù)B.在區(qū)間(0,2)內(nèi),f(x)為減函數(shù)

C.在區(qū)間(2,)內(nèi),f(x)為增函數(shù)D.在區(qū)間(,0)

(2,)內(nèi),f(x)為增函數(shù)

★★3.(05江西)已知函數(shù)yxf(x)的圖象如右圖所示(其中f"(x)是函數(shù)f(x)的導(dǎo)函數(shù)),下面四個(gè)圖象中

yf(x)y的圖象大致是()

1x-2-1O12-1

yyy2y4422O1x2x11-2-112-2O-112-2-1O1x-2-2-2-2-1O2x

ABCD

★★★4、(201*年山東21)(本小題滿分12分)

已知函數(shù)f(x)1nxax1ax1(aR).(Ⅰ)當(dāng)a1時(shí),求曲線yf(x)在點(diǎn)(2,f(2))處的切線方程;

(Ⅱ)當(dāng)a≤12時(shí),討論f(x)的單調(diào)性.三、導(dǎo)數(shù)在最值、極值中的運(yùn)用:

★1.(05全國卷Ⅰ)函數(shù)

f(x)x3ax23x9,已知f(x)在x3時(shí)取得極值,則a=()A.2

B.3

C.4D.5

★2.函數(shù)y2x33x212x5在[0,3]上的最大值與最小值分別是()A.5,-15B.5,4C.-4,-15D.5,-16★★★3.(根據(jù)04年天津卷文21改編)已知函數(shù)f(x)ax3cxd(a0)是R上的奇函數(shù),當(dāng)x1時(shí)f(x)取

得極值-2.

(1)試求a、c、d的值;(2)求f(x)的單調(diào)區(qū)間和極大值;

★★★4.(根據(jù)山東201*年文21改編)設(shè)函數(shù)f(x)x2ex1ax3bx2,已知x2和x1為f(x)的極值

點(diǎn)。

(1)求a,b的值;(2)討論f(x)的單調(diào)性;

第二章推理與證明知識(shí)點(diǎn):

1、歸納推理

把從個(gè)別事實(shí)中推演出一般性結(jié)論的推理,稱為歸納推理(簡稱歸納).簡言之,歸納推理是由部分到整體、由特殊到一般的推理。歸納推理的一般步驟:通過觀察個(gè)別情況發(fā)現(xiàn)某些相同的性質(zhì);

從已知的相同性質(zhì)中推出一個(gè)明確表述的一般命題(猜想);證明(視題目要求,可有可無).

2、類比推理

由兩類對(duì)象具有某些類似特征和其中一類對(duì)象的某些已知特征,推出另一類對(duì)象也具有這些特征的推理稱為類比推理(簡稱類比).

簡言之,類比推理是由特殊到特殊的推理.類比推理的一般步驟:

找出兩類對(duì)象之間可以確切表述的相似特征;

用一類對(duì)象的已知特征去推測另一類對(duì)象的特征,從而得出一個(gè)猜想;檢驗(yàn)猜想。3、合情推理

歸納推理和類比推理都是根據(jù)已有的事實(shí),經(jīng)過觀察、分析、比較、聯(lián)想,再進(jìn)行歸納、類比,然后提出猜想的推理.

歸納推理和類比推理統(tǒng)稱為合情推理,通俗地說,合情推理是指“合乎情理”的推理.4、演繹推理

從一般性的原理出發(fā),推出某個(gè)特殊情況下的結(jié)論,這種推理稱為演繹推理.簡言之,演繹推理是由一般到特殊的推理.演繹推理的一般模式“三段論”,包括⑴大前提-----已知的一般原理;⑵小前提-----所研究的特殊情況;

⑶結(jié)論-----據(jù)一般原理,對(duì)特殊情況做出的判斷.5、直接證明與間接證明

⑴綜合法:利用已知條件和某些數(shù)學(xué)定義、公理、定理等,經(jīng)過一系列的推理論證,最后推導(dǎo)出所要證明的結(jié)論成立.要點(diǎn):順推證法;由因?qū)Ч?

⑵分析法:從要證明的結(jié)論出發(fā),逐步尋找使它成立的充分條件,直至最后,把要證明的結(jié)論歸結(jié)為判定一個(gè)明顯成立的條件(已知條件、定理、定義、公理等)為止.要點(diǎn):逆推證法;執(zhí)果索因.

⑶反證法:一般地,假設(shè)原命題不成立,經(jīng)過正確的推理,最后得出矛盾,因此說明假設(shè)錯(cuò)誤,從而證明了原命題成立.的證明方法.它是一種間接的證明方法.反證法法證明一個(gè)命題的一般步驟:(1)(反設(shè))假設(shè)命題的結(jié)論不成立;

(2)(推理)根據(jù)假設(shè)進(jìn)行推理,直到導(dǎo)出矛盾為止;(3)(歸謬)斷言假設(shè)不成立;

(4)(結(jié)論)肯定原命題的結(jié)論成立.6、數(shù)學(xué)歸納法

數(shù)學(xué)歸納法是證明關(guān)于正整數(shù)n的命題的一種方法.用數(shù)學(xué)歸納法證明命題的步驟;(1)(歸納奠基)證明當(dāng)n取第一個(gè)值n*nk(kn0(n0N)時(shí)命題成立;

(2)(歸納遞推)假設(shè)*0,kN)時(shí)命題成立,推證當(dāng)nk1時(shí)命題也成立.只要完成了這兩個(gè)步驟,就可以斷定命題對(duì)從n0開始的所有正整數(shù)n都成立.

考點(diǎn):無

第三章數(shù)系的擴(kuò)充與復(fù)數(shù)的引入知識(shí)點(diǎn):

一:復(fù)數(shù)的概念

(1)復(fù)數(shù):形如abi(aR,bR)的數(shù)叫做復(fù)數(shù),a和b分別叫它的實(shí)部和虛部.

(2)分類:復(fù)數(shù)abi(aR,bR)中,當(dāng)b0,就是實(shí)數(shù);b0,叫做虛數(shù);當(dāng)a0,b0時(shí),叫做純虛數(shù).(3)復(fù)數(shù)相等:如果兩個(gè)復(fù)數(shù)實(shí)部相等且虛部相等就說這兩個(gè)復(fù)數(shù)相等.

(4)共軛復(fù)數(shù):當(dāng)兩個(gè)復(fù)數(shù)實(shí)部相等,虛部互為相反數(shù)時(shí),這兩個(gè)復(fù)數(shù)互為共軛復(fù)數(shù).

(5)復(fù)平面:建立直角坐標(biāo)系來表示復(fù)數(shù)的平面叫做復(fù)平面,x軸叫做實(shí)軸,y軸除去原點(diǎn)的部分叫做虛軸。(6)兩個(gè)實(shí)數(shù)可以比較大小,但兩個(gè)復(fù)數(shù)如果不全是實(shí)數(shù)就不能比較大小。2.相關(guān)公式

⑴abicdiab,且cd⑵abi0ab0⑶zabia2b2

⑷zabi

z,z指兩復(fù)數(shù)實(shí)部相同,虛部互為相反數(shù)(互為共軛復(fù)數(shù)).3.復(fù)數(shù)運(yùn)算

⑴復(fù)數(shù)加減法:abicdiacbdi;⑵復(fù)數(shù)的乘法:abicdiacbdbcadi;

⑶復(fù)數(shù)的除法:abicdiabicdicdicdiacbdbcadiacbdbcadc2d2c2d2c2d2i

(類似于無理數(shù)除法的分母有理化虛數(shù)除法的分母實(shí)數(shù)化)4.常見的運(yùn)算規(guī)律

(1)zz;(2)zz2a,zz2bi;

(3)zzz2z2a2b2;(4)zz;(5)zzzR

(6)i4n1i,i4n21,i4n3i,i4n41;

2(7)1i2i;(8)1i1ii,1i1i1ii,2i

(9)設(shè)13i是1的立方虛根,則120,3n1,3n2,3n321考點(diǎn):復(fù)數(shù)的運(yùn)算

★山東理科1若zcosisin(i為虛數(shù)單位),則z21的值可能是

(B)(C)(D)643243i

★山東文科1.復(fù)數(shù)的實(shí)部是()

1+2i

(A)A.2

B.2

C.3

D.4

mAmn()1(n(1)1)mmn!n!An1)nmmnnn(n7、公式:CCmmCCnnm!m!(nAmm!m!(nm)!m)!Am

mmnn

nmCmnCn;

z★山東理科(2)設(shè)z的共軛復(fù)數(shù)是z,若z+z=4,zz=8,則等于

z(A)i(B)-i(C)±1(D)±i

m1mmCCCnnn1

ab)CaCabCabCabCbnnnnn8、二項(xiàng)式定理:(rnrr9、二項(xiàng)式通項(xiàng)公式展開式的通項(xiàng)公式:TCab(r0,1n)r1nn0n1n12n22rnrrnn

高中數(shù)學(xué)選修2-3知識(shí)點(diǎn)

第一章計(jì)數(shù)原理知識(shí)點(diǎn):Ammmm1mm1n1AnAmCnAnmAn1、分類加法計(jì)數(shù)原理:做一件事情,完成它有N類辦法,在第一類辦法中有M1種不同的方法,在第二類辦法中

有M2種不同的方法,……,在第N類辦法中有MN種不同的方法,那么完成這件事情共有M1+M2+……+MN種不同的方法。

2、分步乘法計(jì)數(shù)原理:做一件事,完成它需要分成N個(gè)步驟,做第一步有m1種不同的方法,做第二步有M2不同的方法,……,做第N步有MN不同的方法.那么完成這件事共有N=M1M2...MN種不同的方法。3、排列:從n個(gè)不同的元素中任取m(m≤n)個(gè)元素,按照一定順序......排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列

4、排列數(shù):從n個(gè)不同元素中取出m(m≤n)個(gè)元素排成一列,稱為從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列.從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列數(shù),用符號(hào)

Anm表示。

Amn(n1)(nm1)n!(nm)!(mn,n,mN)

5、公式:

,

Amm1nnAn1

6、組合:從n個(gè)不同的元素中任取m(m≤n)個(gè)元素并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合。

考點(diǎn):1、排列組合的運(yùn)用

2、二項(xiàng)式定理的應(yīng)用

★★1.我省高中學(xué)校自實(shí)施素質(zhì)教育以來,學(xué)生社團(tuán)得到迅猛發(fā)展。某校高一新生中的五名同學(xué)打算參加“春暉文學(xué)社”、“舞者輪滑俱樂部”、“籃球之家”、“圍棋苑”四個(gè)社團(tuán)。若每個(gè)社團(tuán)至少有一名同學(xué)參加,每名同學(xué)至少參加一個(gè)社團(tuán)且只能參加一個(gè)社團(tuán),且同學(xué)甲不參加“圍棋苑”,則不同的參加方法的種數(shù)為()A.72B.108C.180D.216

★★2.在(x1243x)的展開式中,x的冪的指數(shù)是整數(shù)的項(xiàng)共有

()

A.3項(xiàng)B.4項(xiàng)C.5項(xiàng)D.6項(xiàng)

★★3.現(xiàn)有12件商品擺放在貨架上,擺成上層4件下層8件,現(xiàn)要從下層8件中取2件調(diào)整到上層,若其他商品的相對(duì)順序不變,則不同調(diào)整方法的種數(shù)是

A.420B.560C.840D.201*0

★★4.把編號(hào)為1,2,3,4的四封電子郵件分別發(fā)送到編號(hào)為1,2,3,4的四個(gè)網(wǎng)址,則至多有一封郵件的編號(hào)與網(wǎng)址的編號(hào)相同的概率為

★★5.(x1x)8的展開式中x2的系數(shù)為()

A.-56B.56C.-336D.336

第二章隨機(jī)變量及其分布知識(shí)點(diǎn):

1、隨機(jī)變量:如果隨機(jī)試驗(yàn)可能出現(xiàn)的結(jié)果可以用一個(gè)變量X來表示,并且X是隨著試驗(yàn)的結(jié)果的不同而變化,那么這樣的變量叫做隨機(jī)變量.隨機(jī)變量常用大寫字母X、Y等或希臘字母ξ、η等表示。

2、離散型隨機(jī)變量:在上面的射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.

3、離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn

X取每一個(gè)值xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X的概率分布,簡稱分布列

4、分布列性質(zhì)①pi≥0,i=1,2,;②p1+p2++pn=1.5、二項(xiàng)分布:如果隨機(jī)變量X的分布列為:

期望方差兩點(diǎn)分布Eξ=pDξ=pq,q=1-p超幾何分布服從參數(shù)為N,M,n的超幾何分布EnMD(X)=np(1-p)*(N-n)/(N-1)N(不要求)二項(xiàng)分布,ξ~B(n,p)Eξ=npDξ=qEξ=npq,(q=1-p)幾何分布,p(ξ=k)=g(k,p)1pDqp2

其中0

從上表看到,正態(tài)總體在(2,2)以外取值的概率只有4.6%,在(3,3)以外取值的概率只有0.3%由于這些概率很小,通常稱這些情況發(fā)生為小概率事件.也就是說,通常認(rèn)為這些情況在一次試驗(yàn)中幾乎是不可能發(fā)生的.

考點(diǎn):1、概率的求解

2、期望的求解3、正態(tài)分布概念

★★★1.(本小題滿分12分)某項(xiàng)考試按科目A、科目B依次進(jìn)行,只有當(dāng)科目A成績合格時(shí),才可以繼續(xù)參加科目B的考試。每個(gè)科目只允許有一次補(bǔ)考機(jī)會(huì),兩個(gè)科目成績均合格方可獲得該項(xiàng)合格證書,現(xiàn)在某同學(xué)將要

1xyn其中b1x2n(x2)考點(diǎn):無

xySP(xx)(yy),

aybxSS(xx)2x21,每次考科目B成績合格的概率均為。假設(shè)他在這32項(xiàng)考試中不放棄所有的考試機(jī)會(huì),且每次的考試成績互不影響,記他參加考試的次數(shù)為X。(1)求X的分布列和均值;

參加這項(xiàng)考試,已知他每次考科目A成績合格的概率均為(2)求該同學(xué)在這項(xiàng)考試中獲得合格證書的概率。

★★★2(本小題滿分12分)

濟(jì)南市有大明湖、趵突泉、千佛山、園博園4個(gè)旅游景點(diǎn),一位客人瀏覽這四個(gè)景點(diǎn)的概率分別是0.3,0.4,

0.5,0.6,且客人是否游覽哪個(gè)景點(diǎn)互不影響,設(shè)表示客人離開該城市時(shí)游覽的景點(diǎn)數(shù)與沒有游覽的景點(diǎn)數(shù)之差的絕對(duì)值。

(1)求=0對(duì)應(yīng)的事件的概率;(2)求的分布列及數(shù)學(xué)期望!铩铩3.袋子中裝有8個(gè)黑球,2個(gè)紅球,這些球只有顏色上的區(qū)別。

(1)隨機(jī)從中取出2個(gè)球,表示其中紅球的個(gè)數(shù),求的分布列及均值。

(2)現(xiàn)在規(guī)定一種有獎(jiǎng)摸球游戲如下:每次取球一個(gè),取后不放回,取到黑球有獎(jiǎng),第一個(gè)獎(jiǎng)100元,第二個(gè)獎(jiǎng)200元,,第k個(gè)獎(jiǎng)k100元,取到紅球則要罰去前期所有獎(jiǎng)金并結(jié)束取球,按照這種規(guī)則,取球多少次比較適宜?說明理由。

第三章統(tǒng)計(jì)案例知識(shí)點(diǎn):

1、獨(dú)立性檢驗(yàn)

假設(shè)有兩個(gè)分類變量X和Y,它們的值域分另為{x1,x2}和{y1,y2},其樣本頻數(shù)列聯(lián)表為:x1x2總計(jì)

y1aca+c

y2bdb+d

總計(jì)a+bc+da+b+c+d

若要推斷的論述為H1:“X與Y有關(guān)系”,可以利用獨(dú)立性檢驗(yàn)來考察兩個(gè)變量是否有關(guān)系,并且能較精確地給出這種判斷的可靠程度。具體的做法是,由表中的數(shù)據(jù)算出隨機(jī)變量K^2的值(即K的平方)K2=n(ad-bc)2

/[(a+b)(c+d)(a+c)(b+d)],其中n=a+b+c+d為樣本容量,K2的值越大,說明“X與Y有關(guān)系”成立的可能性越大。K2≤3.841時(shí),X與Y無關(guān);K2>3.841時(shí),X與Y有95%可能性有關(guān);K2>6.635時(shí)X與Y有99%可能性有關(guān)2、回歸分析

abx回歸直線方程y

擴(kuò)展閱讀:高中數(shù)學(xué)選修2-1知識(shí)點(diǎn)、考點(diǎn)、附典型例題

高二數(shù)學(xué)選修2-1

第一章:命題與邏輯結(jié)構(gòu)知識(shí)點(diǎn):

1、命題:用語言、符號(hào)或式子表達(dá)的,可以判斷真假的陳述句.真命題:判斷為真的語句.假命題:判斷為假的語句.2、“若p,則q”形式的命題中的p稱為命題的條件,q稱為命題的結(jié)論.

3、對(duì)于兩個(gè)命題,如果一個(gè)命題的條件和結(jié)論分別是另一個(gè)命題的結(jié)論和條件,則這兩個(gè)命題稱為互逆命題.其中一個(gè)命題稱為原命題,另一個(gè)稱為原命題的逆命題.若原命題為“若p,則q”,它的逆命題為“若q,則p”.

4、對(duì)于兩個(gè)命題,如果一個(gè)命題的條件和結(jié)論恰好是另一個(gè)命題的條件的否定和結(jié)論的否定,則這兩個(gè)命題稱為互否命題.中一個(gè)命題稱為原命題,另一個(gè)稱為原命題的否命題.若原命題為“若p,則q”,則它的否命題為“若p,則q”.5、對(duì)于兩個(gè)命題,如果一個(gè)命題的條件和結(jié)論恰好是另一個(gè)命題的結(jié)論的否定和條件的否定,則這兩個(gè)命題稱為互為逆否命題.其中一個(gè)命題稱為原命題,另一個(gè)稱為原命題的逆否命題.

若原命題為“若p,則q”,則它的否命題為“若q,則p”.6、四種命題的真假性:

原命題逆命題否命題真真真真假假假真真假假假

四種命題的真假性之間的關(guān)系:

1兩個(gè)命題互為逆否命題,它們有相同的真假性;

逆否命題

真真真假

2兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.

7、若pq,則p是q的充分條件,q是p的必要條件.若pq,則p是q的充要條件(充分必要條件).

8、用聯(lián)結(jié)詞“且”把命題p和命題q聯(lián)結(jié)起來,得到一個(gè)新命題,記作pq.當(dāng)p、當(dāng)p、q都是真命題時(shí),pq是真命題;q兩個(gè)命題中有一個(gè)命題是假命題時(shí),pq是假命題.

用聯(lián)結(jié)詞“或”把命題p和命題q聯(lián)結(jié)起來,得到一個(gè)新命題,記作pq.

當(dāng)p、q兩個(gè)命題中有一個(gè)命題是真命題時(shí),pq是真命題;當(dāng)p、q兩個(gè)命題都是假命題時(shí),pq是假命題.

對(duì)一個(gè)命題p全盤否定,得到一個(gè)新命題,記作p.

若p是真命題,則p必是假命題;若p是假命題,則p必是真命題.

9、短語“對(duì)所有的”、“對(duì)任意一個(gè)”在邏輯中通常稱為全稱量詞,用“”表示.含有全稱量詞的命題稱為全稱命題.

全稱命題“對(duì)中任意一個(gè)x,有px成立”,記作“x,px”.短語“存在一個(gè)”、“至少有一個(gè)”在邏輯中通常稱為存在量詞,用“”表示.含有存在量詞的命題稱為特稱命題.

特稱命題“存在中的一個(gè)x,使px成立”,記作“x,px”.

10、全稱命題p:x,px,它的否定p:x,px.全稱命題的否定是特稱命題.

考點(diǎn):1、充要條件的判定

2、命題之間的關(guān)系

典型例題:

★1.下面四個(gè)條件中,使ab成立的充分而不必要的條件是A.a(chǎn)b1B.a(chǎn)b1

C.a(chǎn)2b2

n

D.a(chǎn)3b3

★2.已知命題P:n∈N,2>1000,則P為A.n∈N,2n≤1000B.n∈N,2n>1000

C.n∈N,2≤1000

n

D.n∈N,2<1000

n

★3."x1"是"|x|1"的

A.充分不必要條件B.必要不充分條件C.充分必要條件D.既不充分又不必要條件

第二章:圓錐曲線知識(shí)點(diǎn):

1、平面內(nèi)與兩個(gè)定點(diǎn)F1,F(xiàn)2的距離之和等于常數(shù)(大于F1F2)的點(diǎn)的軌跡稱為橢圓.這兩個(gè)定點(diǎn)稱為橢圓的焦點(diǎn),兩焦點(diǎn)的距離稱為橢圓的焦距.2、橢圓的幾何性質(zhì):焦點(diǎn)的位置焦點(diǎn)在x軸上

焦點(diǎn)在y軸上

圖形

xa22

ya22標(biāo)準(zhǔn)方程

yb221ab0

xb221ab0

范圍

axa且bybbxb且aya

1a,0、2a,010,a、20,a1b,0、2b,0

頂點(diǎn)

10,b、20,b

軸長焦點(diǎn)焦距對(duì)稱性離心率

短軸的長2b長軸的長2a

F1c,0、F2c,0

22F10,c、F20,c

2F1F22ccab

關(guān)于x軸、y軸、原點(diǎn)對(duì)稱

eca1ba220e1

準(zhǔn)線方程

xa2cya2c

3、設(shè)是橢圓上任一點(diǎn),點(diǎn)到F1對(duì)應(yīng)準(zhǔn)線的距離為d1,點(diǎn)到F2對(duì)應(yīng)準(zhǔn)線的距離為

d2,則

F1d1F2d2e.

4、平面內(nèi)與兩個(gè)定點(diǎn)F1,F(xiàn)2的距離之差的絕對(duì)值等于常數(shù)(小于F1F2)的點(diǎn)的軌跡稱為雙曲線.這兩個(gè)定點(diǎn)稱為雙曲線的焦點(diǎn),兩焦點(diǎn)的距離稱為雙曲線的焦距.5、雙曲線的幾何性質(zhì):焦點(diǎn)的位置

焦點(diǎn)在x軸上

焦點(diǎn)在y軸上

圖形

標(biāo)準(zhǔn)方程

xa22

ya22yb221a0,b0

xb221a0,b0

范圍頂點(diǎn)軸長焦點(diǎn)焦距對(duì)稱性離心率

xa或xa,yR

ya或ya,xR

1a,0、2a,010,a、20,a

虛軸的長2b實(shí)軸的長2a

F1c,0、F2c,0

22F10,c、F20,c

2F1F22ccab

關(guān)于x軸、y軸對(duì)稱,關(guān)于原點(diǎn)中心對(duì)稱

eca1ba22e1

a2準(zhǔn)線方程

xa2cba

x

ycab

x

漸近線方程yy6、實(shí)軸和虛軸等長的雙曲線稱為等軸雙曲線.

7、設(shè)是雙曲線上任一點(diǎn),點(diǎn)到F1對(duì)應(yīng)準(zhǔn)線的距離為d1,點(diǎn)到F2對(duì)應(yīng)準(zhǔn)線的距離為d2,則

F1d1F2d2e.

8、平面內(nèi)與一個(gè)定點(diǎn)F和一條定直線l的距離相等的點(diǎn)的軌跡稱為拋物線.定點(diǎn)F稱為拋物線的焦點(diǎn),定直線l稱為拋物線的準(zhǔn)線.9、過拋物線的焦點(diǎn)作垂直于對(duì)稱軸且交拋物線于、兩點(diǎn)的線段,稱為拋物線的“通徑”,即2p.10、拋物線的幾何性質(zhì):

y22pxy22pxx22pyx22py

標(biāo)準(zhǔn)方程

圖形

p0p0p0p0

頂點(diǎn)

0,0

y軸

對(duì)稱軸x軸

焦點(diǎn)

pF,02pF,0

2pF0,

2pF0,

2準(zhǔn)線方程xp2xp2yp2yp2

離心率e1

范圍x0x0

y0y0

考點(diǎn):1、圓錐曲線方程的求解

2、直線與圓錐曲線綜合性問題

3、圓錐曲線的離心率問題

典型例題:

★★1.設(shè)雙曲線的左準(zhǔn)線與兩條漸近線交于A,B兩點(diǎn),左焦點(diǎn)在以AB為直徑的圓內(nèi),

則該雙曲線的離心率的取值范圍為

A.(0,2)

2222B.(1,2)C.(22,1)D.(2,)

★★★2.設(shè)橢圓

xayb1(ab0)的左、右焦點(diǎn)分別為F1,F(xiàn)2。點(diǎn)P(a,b)滿足

|PF2||F1F2|.(Ⅰ)求橢圓的離心率e;

(Ⅱ)設(shè)直線PF2與橢圓相交于A,B兩點(diǎn),若直線PF2與圓(x1)2(y交于M,N兩點(diǎn),且|MN|58|AB|,求橢圓的方程。

23)16相

第三章:空間向量知識(shí)點(diǎn):

1、空間向量的概念:

1在空間,具有大小和方向的量稱為空間向量.

2向量可用一條有向線段來表示.有向線段的長度表示向量的大小,箭頭所指的方向表示

向量的方向.

,記作.3向量的大小稱為向量的模(或長度)

4模(或長度)為0的向量稱為零向量;模為1的向量稱為單位向量.5與向量a長度相等且方向相反的向量稱為a的相反向量,記作a.6方向相同且模相等的向量稱為相等向量.

2、空間向量的加法和減法:

它遵循平行1求兩個(gè)向量和的運(yùn)算稱為向量的加法,

四邊形法則.即:在空間以同一點(diǎn)為起點(diǎn)的兩個(gè)已

知向量a、b為鄰邊作平行四邊形C,則以起點(diǎn)的對(duì)角線C就是a與b的和,這種求向量和的方

法,稱為向量加法的平行四邊形法則.

2求兩個(gè)向量差的運(yùn)算稱為向量的減法,它遵循三角

形法則.即:在空間任取一點(diǎn),作a,b,則ab.

3、實(shí)數(shù)與空間向量a的乘積a是一個(gè)向量,稱為向量的數(shù)乘運(yùn)算.當(dāng)0時(shí),a與

a方向相同;當(dāng)0時(shí),a與a方向相反;當(dāng)0時(shí),a為零向量,記為0.a(chǎn)的長度是a的長度的倍.

4、設(shè),為實(shí)數(shù),a,b是空間任意兩個(gè)向量,則數(shù)乘運(yùn)算滿足分配律及結(jié)合律.

分配律:abab;結(jié)合律:aa.

5、如果表示空間的有向線段所在的直線互相平行或重合,則這些向量稱為共線向量或平行向量,并規(guī)定零向量與任何向量都共線.

6、向量共線的充要條件:對(duì)于空間任意兩個(gè)向量a,bb0,a//b的充要條件是存在

實(shí)數(shù),使ab.

7、平行于同一個(gè)平面的向量稱為共面向量.

8、向量共面定理:空間一點(diǎn)位于平面C內(nèi)的充要條件是存在有序?qū)崝?shù)對(duì)x,y,使

或?qū)臻g任一定點(diǎn),有或若四點(diǎn),,xyC;xyC;

,C共面,則xyzCxyz1.

9、已知兩個(gè)非零向量a和b,在空間任取一點(diǎn),作a,b,則稱為向量a,b的夾角,記作a,b.兩個(gè)向量夾角的取值范圍是:a,b0,.

10、對(duì)于兩個(gè)非零向量a和b,若a,b,則向量a,b互相垂直,記作ab.

2aa11、已知兩個(gè)非零向量和b,則abcosa,b稱為,b的數(shù)量積,記作ab.即

ababcosa,b.零向量與任何向量的數(shù)量積為0.

12、ab等于a的長度a與b在a的方向上的投影bcosa,b的乘積.13若a,b為非零向量,e為單位向量,則有1eaaeacosa,e;aba與b同向2,aaa,a2abab0;3ababa與b反向ab4cosa,b;5abab.

abaa;

14量數(shù)乘積的運(yùn)算律:1abba;2ababab;

3abcacbc.

15、空間向量基本定理:若三個(gè)向量a,b,c不共面,則對(duì)空間任一向量p,存在實(shí)數(shù)

組x,y,z,使得pxaybzc.

16、三個(gè)向量a,b,c不共面,則所有空間向量組成的集合是

ppxaybzc,x,y,zR.這個(gè)集合可看作是由向量a,b,c生成的,

a,b,c稱為空間的一個(gè)基底,a,b,c稱為基向量.空間任意三個(gè)不共面的向量都可以

構(gòu)成空間的一個(gè)基底.

17、設(shè)e1,e2,e3為有公共起點(diǎn)的三個(gè)兩兩垂直的單位向量(稱它們?yōu)閱挝徽换祝,以e1,e2,e3的公共起點(diǎn)為原點(diǎn),分別以e1,e2,e3的方向?yàn)閤軸,y軸,z軸的正

方向建立空間直角坐標(biāo)系xyz.則對(duì)于空間任意一個(gè)向量p,一定可以把它平移,使它的

起點(diǎn)與原點(diǎn)重合,得到向量p.存在有序?qū)崝?shù)組

x,y,z,使得

px1ey2e.把zex,y,z稱作向量p在單位正交基底e1,e2,e3下的坐標(biāo),記3作px,y,z.此時(shí),向量p的坐標(biāo)是點(diǎn)在空間直角坐標(biāo)系xyz中的坐標(biāo)x,y,z.18、設(shè)ax1,y1,z1,bx2,y2,z2,則1abx1x2,y1y2,z1z2.2abx1x2,y1y2,z1z2.

3ax1,y1,z1.

4abx1x2y1y2z1z2.

5若a、b為非零向量,則abab0x1x2y1y2z1z20.

6若b0,則a//babx1x2,y1y2,z1z2.

7aaax1y1z1.

x1x2y1y2z1z2xyz212121222ab8cosa,babxyz222222.

9x1,y1,z1,x2,y2,z2,則dx2x12y2y12z2z12.

19、在空間中,取一定點(diǎn)作為基點(diǎn),那么空間中任意一點(diǎn)的位置可以用向量來表示.向量稱為點(diǎn)的位置向量.

20、空間中任意一條直線l的位置可以由l上一個(gè)定點(diǎn)以及一個(gè)定方向確定.點(diǎn)是直線

l上一點(diǎn),向量a表示直線l的方向向量,則對(duì)于直線l上的任意一點(diǎn),有ta,這樣

點(diǎn)和向量a不僅可以確定直線l的位置,還可以具體表示出直線l上的任意一點(diǎn).

21、空間中平面的位置可以由內(nèi)的兩條相交直線來確定.設(shè)這兩條相交直線相交于點(diǎn)

,它們的方向向量分別為a,b.為平面上任意一點(diǎn),存在有序?qū)崝?shù)對(duì)x,y,使得xayb,這樣點(diǎn)與向量a,b就確定了平面的位置.

22、直線l垂直,取直線l的方向向量a,則向量a稱為平面的法向量.

ba23、若空間不重合兩條直線a,的方向向量分別為,b,則a//ba//b,abRababab0.

24、若直線a的方向向量為a,平面的法向量為n,且a,則a//a//

anan0,aaa//nan.

25、若空間不重合的兩個(gè)平面,的法向量分別為a,b,則//a//bab,abab0.

26、設(shè)異面直線a,b的夾角為,方向向量為a,b,其夾角為,則有

abcoscos.

ab27、設(shè)直線l的方向向量為l,平面的法向量為n,l與所成的角為,l與n的夾角

ln為,則有sincos.

ln28、設(shè)n1,n2是二面角l的兩個(gè)面,的法向量,則向量n1,n2的夾角(或其

n1n2補(bǔ)角)就是二面角的平面角的大。舳娼莑的平面角為,則cos.

n1n229、點(diǎn)與點(diǎn)之間的距離可以轉(zhuǎn)化為兩點(diǎn)對(duì)應(yīng)向量的模計(jì)算.

30、在直線l上找一點(diǎn),過定點(diǎn)且垂直于直線l的向量為n,則定點(diǎn)到直線l的距離

n為dcos,n.n31、點(diǎn)是平面外一點(diǎn),是平面內(nèi)的一定點(diǎn),n為平面的一個(gè)法向量,則點(diǎn)到

n平面的距離為dcos,n.n考點(diǎn):1、利用空間向量證明線線平行、線線垂直

2、利用空間向量證明線面平行、線面垂直、面面平行、面面垂直

3、利用空間向量證明線線角、線面角、面面角問題

典型例題:

★★1.已知正方體ABCDA1B1C1D1中,E為C1D1的中點(diǎn),則異面直線AE與BC所成角

的余弦值為。

★★★2.在如圖所示的幾何體中,四邊形ABCD為平行四邊形,∠ACB=90,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC.AB=2EF.

(Ⅰ)若M是線段AD的中點(diǎn),求證:GM∥平面ABFE;(Ⅱ)若AC=BC=2AE,求二面角A-BF-C的大小.★★★3.如圖,在五棱錐PABCDE中,PA平面ABCDE,

AB//CD,AC//ED,AE//BC,ABC45,AB22,BC2AE4,三角形PAB是等腰三角形。

(Ⅰ)求證:平面PCD平面PAC;

(Ⅱ)求直線PB與平面PCD所成角的大小;(Ⅲ)求四棱錐PACDE的體積。

友情提示:本文中關(guān)于《高中數(shù)學(xué)選修2-2,2-3知識(shí)點(diǎn)、考點(diǎn)、典型例題》給出的范例僅供您參考拓展思維使用,高中數(shù)學(xué)選修2-2,2-3知識(shí)點(diǎn)、考點(diǎn)、典型例題:該篇文章建議您自主創(chuàng)作。

來源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問題,請(qǐng)聯(lián)系我們及時(shí)刪除。


高中數(shù)學(xué)選修2-2,2-3知識(shí)點(diǎn)、考點(diǎn)、典型例題》由互聯(lián)網(wǎng)用戶整理提供,轉(zhuǎn)載分享請(qǐng)保留原作者信息,謝謝!
鏈接地址:http://m.taixiivf.com/gongwen/588230.html