王牌对王牌第一季综艺,黄视频在线观看网站,世界一级毛片,成人黄色免费看

薈聚奇文、博采眾長、見賢思齊
當(dāng)前位置:公文素材庫 > 公文素材 > 范文素材 > 導(dǎo)數(shù)及其應(yīng)用知識點歸納

導(dǎo)數(shù)及其應(yīng)用知識點歸納

網(wǎng)站:公文素材庫 | 時間:2019-05-28 13:18:21 | 移動端:導(dǎo)數(shù)及其應(yīng)用知識點歸納

導(dǎo)數(shù)及其應(yīng)用知識點歸納

第三章導(dǎo)數(shù)及其應(yīng)用

3.1.2導(dǎo)數(shù)的概念

1.函數(shù)f(x)在xx0處的導(dǎo)數(shù):函數(shù)yf(x)在xx0處的瞬時變化率稱為yf(x)在xx0處的導(dǎo)數(shù),記

""f(x0x)f(x0)。y作f(x0)或y|xx0,即f"(x0)limlimx0xx0x3.1.3導(dǎo)數(shù)的幾何意義

1.導(dǎo)數(shù)的幾何意義:函數(shù)f(x)在xx0處的導(dǎo)數(shù)就是曲線yf(x)在點(x0,f(x0))處切線的斜率,

f(x0x)f(x0)即f"(x0)k;limx0x2.求切線方程的步驟:(注:已知點(x0,y0)在已知曲線上)

①求導(dǎo)函數(shù)f(x);②求切線的斜率f(x0);③代入直線的點斜式方程:yy0k(xx0),并整理。3.求切點坐標(biāo)的步驟:①設(shè)切點坐標(biāo)(x0,y0);②求導(dǎo)函數(shù)f(x);③求切線的斜率f(x0);④由斜率間的關(guān)系列出關(guān)于x0的方程,解方程求x0;⑤點(x0,y0)在曲線f(x)上,將(x0,y0)代入求y0,得切點坐標(biāo)。3.2導(dǎo)數(shù)的計算

1.基本初等函數(shù)的導(dǎo)數(shù)公式:①C"0;②(x)"axx"xx"xaa1"""";③(sinx)"cosx;④(cosx)"sinx;

11(a0,且a1);⑧(lnx)".xlnax""""""2.導(dǎo)數(shù)運算法則:①[f(x)g(x)]f(x)g(x);②[f(x)g(x)]f(x)g(x)f(x)g(x);

"⑤(a)alna(a0);⑥(e)e;⑦(logax)f(x)"f"(x)g(x)f(x)g"(x)""][cf(x)]cf(x)③[;④2g(x)[g(x)]3.3.1函數(shù)的單調(diào)性與導(dǎo)數(shù)

(1)在區(qū)間[a,b]內(nèi),f(x)>0,f(x)為單調(diào)遞增;f(x)

優(yōu)化問題用函數(shù)表示的數(shù)學(xué)問題優(yōu)化問題的答案用導(dǎo)數(shù)解決數(shù)學(xué)問題

擴展閱讀:高中數(shù)學(xué)人教版選修2-2導(dǎo)數(shù)及其應(yīng)用知識點總結(jié)

數(shù)學(xué)選修2-2導(dǎo)數(shù)及其應(yīng)用知識點必記

1.函數(shù)的平均變化率是什么?答:平均變化率為

f(x2)f(x1)f(x1x)f(x1)yfx2x1xxx注1:其中x是自變量的改變量,可正,可負,可零。

注2:函數(shù)的平均變化率可以看作是物體運動的平均速度。2、導(dǎo)函數(shù)的概念是什么?

答:函數(shù)yf(x)在xx0處的瞬時變化率是limf(x0x)f(x0)y,則稱limx0xx0x函數(shù)yf(x)在點x0處可導(dǎo),并把這個極限叫做yf(x)在x0處的導(dǎo)數(shù),記作f"(x0)或y"|xx0,即f"(x0)=limf(x0x)f(x0)y.limx0xx0x3.平均變化率和導(dǎo)數(shù)的幾何意義是什么?

答:函數(shù)的平均變化率的幾何意義是割線的斜率;函數(shù)的導(dǎo)數(shù)的幾何意義是切線的斜率。

4導(dǎo)數(shù)的背景是什么?

答:(1)切線的斜率;(2)瞬時速度;(3)邊際成本。5、常見的函數(shù)導(dǎo)數(shù)和積分公式有哪些?函數(shù)導(dǎo)函數(shù)不定積分ycy"0xn1xdxn1nyxnnN*y"nxn1yaxa0,a1y"alnay"exxaxadxlnaxyexedxexxylogaxa0,a1,x0ylnxy"1xlna1x1xdxlnxy"ysinxy"cosxcosxdxsinxsinxdxcosxycosxy"sinx6、常見的導(dǎo)數(shù)和定積分運算公式有哪些?答:若fx,gx均可導(dǎo)(可積),則有:和差的導(dǎo)數(shù)運算f(x)g(x)f(x)g(x)""f"(x)g"(x)f"(x)g(x)f(x)g"(x)積的導(dǎo)數(shù)運算特別地:Cfx"Cf"x商的導(dǎo)數(shù)運算f(x)f"(x)g(x)f(x)g"(x)(g(x)0)g(x)2g(x)"1g"(x)特別地:"2gxgx復(fù)合函數(shù)的導(dǎo)數(shù)yxyuux微積分基本定理fxdxab(其中F"xfx)和差的積分運算ba[f1(x)f2(x)]dxf1(x)dxf2(x)dxaabb特別地:積分的區(qū)間可加性bakf(x)dxkf(x)dx(k為常數(shù))abbaf(x)dxf(x)dxf(x)dx(其中acb)accb6.用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的步驟是什么?答:①求函數(shù)f(x)的導(dǎo)數(shù)f"(x)

②令f"(x)>0,解不等式,得x的范圍就是遞增區(qū)間.③令f"(x)8.利用導(dǎo)數(shù)求函數(shù)的最值的步驟是什么?

答:求f(x)在a,b上的最大值與最小值的步驟如下:⑴求f(x)在a,b上的極值;

⑵將f(x)的各極值與f(a),f(b)比較,其中最大的一個是最大值,最小的一個是最小值。

注:實際問題的開區(qū)間唯一極值點就是所求的最值點;9.求曲邊梯形的思想和步驟是什么?

答:分割近似代替求和取極限(“以直代曲”的思想)10.定積分的性質(zhì)有哪些?

根據(jù)定積分的定義,不難得出定積分的如下性質(zhì):性質(zhì)1

1dxba

ababbbbb性質(zhì)5若f(x)0,xa,b,則f(x)dx0

①推廣:[f1(x)f2(x)fm(x)]dxf1(x)dxf2(x)dxfm(x)

aaaa②推廣:f(x)dxf(x)dxf(x)dxf(x)dx

aac1ckbc1c2b11定積分的取值情況有哪幾種?

答:定積分的值可能取正值,也可能取負值,還可能是0.

(l)當(dāng)對應(yīng)的曲邊梯形位于x軸上方時,定積分的值取正值,且等于x軸上方的圖形面積;

(2)當(dāng)對應(yīng)的曲邊梯形位于x軸下方時,定積分的值取負值,且等于x軸上方圖形面積的相反數(shù);

(3)當(dāng)位于x軸上方的曲邊梯形面積等于位于x軸下方的曲邊梯形面積時,定積分的值為0,且等于x軸上方圖形的面積減去下方的圖形的面積.

12.物理中常用的微積分知識有哪些?答:(1)位移的導(dǎo)數(shù)為速度,速度的導(dǎo)數(shù)為加速度。(2)力的積分為功。

數(shù)學(xué)選修2-2推理與證明知識點必記

13.歸納推理的定義是什么?答:從個別事實中推演出一般性的結(jié)論,像這樣的推理通常稱為歸納推理。.......歸納推理是由部分到整體,由個別到一般的推理。....14.歸納推理的思維過程是什么?答:大致如圖:

實驗、觀察概括、推廣猜測一般性結(jié)論15.歸納推理的特點有哪些?

答:①歸納推理的前提是幾個已知的特殊現(xiàn)象,歸納所得的結(jié)論是尚屬未知的一般現(xiàn)象。

②由歸納推理得到的結(jié)論具有猜測的性質(zhì),結(jié)論是否真實,還需經(jīng)過邏輯證明和實驗檢驗,因此,它不能作為數(shù)學(xué)證明的工具。③歸納推理是一種具有創(chuàng)造性的推理,通過歸納推理的猜想,可以作為進一步研究的起點,幫助人們發(fā)現(xiàn)問題和提出問題。16.類比推理的定義是什么?

答:根據(jù)兩個(或兩類)對象之間在某些方面的相似或相同,推演出它們在其他方面也相似或相同,這樣的推理稱為類比推理。類比推理是由特殊到特殊的推理。....17.類比推理的思維過程是什么?答:

觀察、比較聯(lián)想、類推推測新的結(jié)論18.演繹推理的定義是什么?

答:演繹推理是根據(jù)已有的事實和正確的結(jié)論(包括定義、公理、定理等)按照嚴格的邏輯法則得到新結(jié)論的推理過程。演繹推理是由一般到特殊的推理。....19.演繹推理的主要形式是什么?答:三段論20.“三段論”可以表示為什么?

答:①大前題:M是P②小前提:S是M③結(jié)論:S是P。

其中①是大前提,它提供了一個一般性的原理;②是小前提,它指出了一個特殊對象;③是結(jié)論,它是根據(jù)一般性原理,對特殊情況做出的判斷。21.什么是直接證明?它包括哪幾種證明方法?

答:直接證明是從命題的條件或結(jié)論出發(fā),根據(jù)已知的定義、公理、定理,直接推證結(jié)論的真實性。直接證明包括綜合法和分析法。22.什么是綜合法?

答:綜合法就是“由因?qū)Ч保瑥囊阎獥l件出發(fā),不斷用必要條件代替前面的條件,直至推出要證的結(jié)論。23.什么是分析法?答:分析法就是從所要證明的結(jié)論出發(fā),不斷地用充分條件替換前面的條件或者一定成立的式子,可稱為“由果索因”。

要注意敘述的形式:要證A,只要證B,B應(yīng)是A成立的充分條件.分析法和綜合法常結(jié)合使用,不要將它們割裂開。24什么是間接證明?

答:即反證法:是指從否定的結(jié)論出發(fā),經(jīng)過邏輯推理,導(dǎo)出矛盾,證實結(jié)論的否定是錯誤的,從而肯定原結(jié)論是正確的證明方法。25.反證法的一般步驟是什么?

答:(1)假設(shè)命題結(jié)論不成立,即假設(shè)結(jié)論的反面成立;

(2)從假設(shè)出發(fā),經(jīng)過推理論證,得出矛盾;(3)從矛盾判定假設(shè)不正確,即所求證命題正確。...26常見的“結(jié)論詞”與“反義詞”有哪些?原結(jié)論詞反義詞原結(jié)論詞至少有一個至多有一個至少有n個至多有n個一個也沒有至少有兩個至多有n-1個至少有n+1個對任意x不成立p或qp且q反義詞存在x使成立p且qp或q對所有的x都成立存在x使不成立27.反證法的思維方法是什么?答:正難則反....

28.如何歸繆矛盾?

答:(1)與已知條件矛盾;(2)與已有公理、定理、定義矛盾;(3)自相矛................盾.

29.?dāng)?shù)學(xué)歸納法(只能證明與正整數(shù)有關(guān)的數(shù)學(xué)命題)的步驟是什么?...nnN答:(1)證明:當(dāng)n取第一個值時命題成立;00....(2)假設(shè)當(dāng)n=k(k∈N*,且k≥n0)時命題成立,證明當(dāng)n=k+1時命題也成立......由(1),(2)可知,命題對于從n0開始的所有正整數(shù)n都正確注:常用于證明不完全歸納法推測所得命題的正確性的證明。

數(shù)學(xué)選修2-2數(shù)系的擴充和復(fù)數(shù)的概念知識點必記

30.復(fù)數(shù)的概念是什么?答:形如a+bi的數(shù)叫做復(fù)數(shù),其中i叫虛數(shù)單位,a叫實部,b叫虛部,數(shù)集....

Cabi|a,bR叫做復(fù)數(shù)集。

規(guī)定:abicdia=c且,強調(diào):兩復(fù)數(shù)不能比較大小,只有相等或不相....b=d...等。

實數(shù)(b0)31.?dāng)?shù)集的關(guān)系有哪些?答:復(fù)數(shù)Z一般虛數(shù)(a0)

虛數(shù)(b0)純虛數(shù)(a0)32.復(fù)數(shù)的幾何意義是什么?答:復(fù)數(shù)與平面內(nèi)的點或有序?qū)崝?shù)對一一對應(yīng)。

33.什么是復(fù)平面?

答:根據(jù)復(fù)數(shù)相等的定義,任何一個復(fù)數(shù)zabi,都可以由一個有序?qū)崝?shù)對

(a,b)唯一確定。由于有序?qū)崝?shù)對(a,b)與平面直角坐標(biāo)系中的點一一對應(yīng),因此

復(fù)數(shù)集與平面直角坐標(biāo)系中的點集之間可以建立一一對應(yīng)。這個建立了直角坐標(biāo)系來表示復(fù)數(shù)的平面叫做復(fù)平面,x軸叫做實軸,y軸叫做虛軸。實軸上的點都表示實數(shù),除了原點外,虛軸上的點都表示純虛數(shù)。34.如何求復(fù)數(shù)的模(絕對值)?答:與復(fù)數(shù)z對應(yīng)的向量OZ的模r叫做復(fù)數(shù)zabi的模(也叫絕對值)記作

z或abi。由模的定義可知:zabia2b2

35.復(fù)數(shù)的加、減法運算及幾何意義是什么?

答:①復(fù)數(shù)的加、減法法則:z1abi與z2cdi,則z1z2ac(bd)i。

注:復(fù)數(shù)的加、減法運算也可以按向量的加、減法來進行。..②復(fù)數(shù)的乘法法則:(abi)(cdi)acbdadbci。③復(fù)數(shù)的除法法則:

abi(abi)(cdi)acbdbcadicdi(cdi)(cdi)c2d2c2d2其中cdi叫做實數(shù)化因子36.什么是共軛復(fù)數(shù)?

答:兩復(fù)數(shù)abi與abi互為共軛復(fù)數(shù),當(dāng)b0時,它們叫做共軛虛數(shù)。

常見的運算規(guī)律

(1)zz;2(2)zz2a,zz2bi;

2(3)zzzza2b2;(4)zz;(5)zzzR

(6)i4n1i,i24n21,i4n3i,i4n41;

2(7)1i1i1i1ii;(8)i,i,i1i1i213i23n1,3n2,3n31是1的立方虛根,則10,2(9)設(shè)

友情提示:本文中關(guān)于《導(dǎo)數(shù)及其應(yīng)用知識點歸納》給出的范例僅供您參考拓展思維使用,導(dǎo)數(shù)及其應(yīng)用知識點歸納:該篇文章建議您自主創(chuàng)作。

來源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問題,請聯(lián)系我們及時刪除。


導(dǎo)數(shù)及其應(yīng)用知識點歸納》由互聯(lián)網(wǎng)用戶整理提供,轉(zhuǎn)載分享請保留原作者信息,謝謝!
鏈接地址:http://m.taixiivf.com/gongwen/578796.html