王牌对王牌第一季综艺,黄视频在线观看网站,世界一级毛片,成人黄色免费看

薈聚奇文、博采眾長、見賢思齊
當(dāng)前位置:公文素材庫 > 公文素材 > 范文素材 > 初一平行線證明題(精選多篇)

初一平行線證明題(精選多篇)

網(wǎng)站:公文素材庫 | 時間:2019-05-22 10:50:00 | 移動端:初一平行線證明題(精選多篇)

第一篇:初一平行線證明題

初一平行線證明題

用反證法

a平面垂直與一條直線,

設(shè)平面和直線的交點(diǎn)為p

b平面垂直與一條直線,

設(shè)平面和直線的交點(diǎn)為q

假設(shè)a和b不平行,那么一定有交點(diǎn)。

設(shè)有交點(diǎn)r,那么

做三角形pqr

pr垂直pqqr垂直pq

沒有這樣的三角形。因為三角形的內(nèi)角和為180

所以a一定平行于b

證明:如果a‖b,a‖c,那么b‖c證明:假使b、c不平行則b、c交于一點(diǎn)o又因為a‖b,a‖c所以過o有b、c兩條直線平行于a這就與平行公理矛盾所以假使不成立所以b‖c由同位角相等,兩直線平行,可推出:內(nèi)錯角相等,兩直線平行。同旁內(nèi)角互補(bǔ),兩直線平行。因為a‖b,a‖c,所以b‖c(平行公理的推論)

2

“兩直線平行,同位角相等.”是公理,是無法證明的,書上給的也只是說明而已,并沒有給出嚴(yán)格證明,而“兩直線平行,內(nèi)錯角相等“則是由上面的公理推導(dǎo)出來的,利用了對等角相等做了一個替換,上面兩位給出的都不是嚴(yán)格的證明。

一、怎樣證明兩直線平行證明兩直線平行的常用定理(性質(zhì))有:1.兩直線平行的判定定理:①同位角相等,兩直線平行;②內(nèi)錯角相等,兩直線平行;③同旁內(nèi)角互補(bǔ),兩直線平行;④平行(或垂直)于同一直線的兩直線平行.2、三角形或梯形的中位線定理.3、如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊.4、平行四邊形的性質(zhì)定理.5、若一直線上有兩點(diǎn)在另一直線的同旁).(a)藝l=匕3(b)/2=藝3(c)匕4二藝5(d)匕2+/4=18)分析:利用平行線判定定理可判斷答案選c認(rèn)六一值!小人﹃夕叱的一試勺洲洲川jlze一b/(一、圖月一飛/匕一|求且它們到該直線的距離相等,則兩直線平行.例1(201*年南通市)已知:如圖l,下列條件中,不能判斷直線l,//l:的是(b).例2(201*年泉州市)如圖2,△注bc中,匕bac的平分線ad交bc于d,④o過點(diǎn)a,且和bc切于d,和ab、ac分別交b于e、f,設(shè)ef交ad于c,連結(jié)df.(l)求證:ef//bc

(1)根據(jù)定義。證明兩個平面沒有公共點(diǎn)。

由于兩個平面平行的定義是否定形式,所以直接判定兩個平面平行較困難,因此通常用反證法證明。

(2)根據(jù)判定定理。證明一個平面內(nèi)有兩條相交直線都與另一個平面平行。

(3)根據(jù)“垂直于同一條直線的兩個平面平行”,證明兩個平面都與同一條直線垂直。

2.兩個平行平面的判定定理與性質(zhì)定理不僅都與直線和平面的平行有邏輯關(guān)系,而且也和直線與直線的平行有密切聯(lián)系。就是說,一方面,平面與平面的平行要用線面、線線的平行來判定;另一方面,平面

與平面平行的性質(zhì)定理又可看作平行線的判定定理。這樣,在一定條件下,線線平行、線面平行、面面平行就可以互相轉(zhuǎn)化。

3.兩個平行平面有無數(shù)條公垂線,它們都是互相平行的直線。夾在兩個平行平面之間的公垂線段相等。

因此公垂線段的長度是唯一的,把這公垂線段的長度叫作兩個平行平面間的距離。顯然這個距離也等于其中一個平面上任意一點(diǎn)到另一個平面的垂線段的長度。

兩條異面直線的距離、平行于平面的直線和平面的距離、兩個平行平面間的距離,都?xì)w結(jié)為兩點(diǎn)之間的距離。

1.兩個平面的位置關(guān)系,同平面內(nèi)兩條直線的位置關(guān)系相類似,可以從有無公共點(diǎn)來區(qū)分。因此,空間不重合的兩個平面的位置關(guān)系有:

(1)平行—沒有公共點(diǎn);

(2)相交—有無數(shù)個公共點(diǎn),且這些公共點(diǎn)的集合是一條直線。

注意:在作圖中,要表示兩個平面平行時,應(yīng)把表示這兩個平面的平行四邊形畫成對應(yīng)邊平行。

2.兩個平面平行的判定定理表述為:

4.兩個平面平行具有如下性質(zhì):

(1)兩個平行平面中,一個平面內(nèi)的直線必平行于另一個平面。

簡述為:“若面面平行,則線面平行”。

(2)如果兩個平行平面同時和第三個平面相交,那么它們的交線平行。

簡述為:“若面面平行,則線線平行”。

(3)如果兩個平行平面中一個垂直于一條直線,那么另一個也與這條直線垂直。

(4)夾在兩個平行平面間的平行線段相等

2

用反證法

a平面垂直與一條直線,

設(shè)平面和直線的交點(diǎn)為p

b平面垂直與一條直線,

設(shè)平面和直線的交點(diǎn)為q

假設(shè)a和b不平行,那么一定有交點(diǎn)。

設(shè)有交點(diǎn)r,那么

做三角形pqr

pr垂直pqqr垂直pq

沒有這樣的三角形。因為三角形的內(nèi)角和為180

所以a一定平行于b

第二篇:平行線性質(zhì)證明題

1、如圖ef∥ad,∠1=∠2,∠bac=70 o,求∠agd。

證明:∵ef∥ad,(已知)

∴∠2=.()

又∵∠1=∠2,(已知)

∴∠1=∠3.(等量代換)

∴ab∥()

∴∠bac+=180 o .(∵∠bac=70 o

∴∠agd=.

6、如圖,a∥b,c∥d,∠1=113°,求∠2、∠3的度數(shù).

3、如下圖:∠3+∠4=180°,∠1=108°。求∠2的度數(shù)

4、已知:如圖,∠ade=∠b,∠dec=115°.求∠c的度數(shù).

. )

7、如圖,ab∥cd,∠1=45°,∠d=∠c,求∠d、∠c、∠b的度數(shù).

5、如圖所示,已知∠b=∠c,ad∥bc,試說明:ad平分∠cae

2、如圖,ab∥cd, ac⊥bc,∠bac =65°,求∠bcd的度數(shù).

參考答案

一、簡答題

1、∠3(兩直線平行,同位角相等);

dg(內(nèi)錯角相等,兩直線平行,)

∠dgc(兩直線平行,同旁內(nèi)角相等)

110度

2、解

: ------------------------------1分

------------------------------3分

--------------------------------------------------5分

------------------------------6分

3、圖為∠3+∠4=180°(已知)

所以ab∥cd(同旁內(nèi)角互補(bǔ),兩直線平行)

因為ab∥cd

所以∠1=∠2(兩直線平行,同位角相等)

因為∠1=108°(已知)

所以∠2=108°(等量代換)

4、解:∵∠ade=∠b

∴de∥bc

∴∠dec+∠c=180°

∴∠c=180°-∠dec =180°-115°=65°

5、∵ad∥bc,∴∠2=∠b,∠1=∠c。又∵∠b=∠c,∴∠1=∠2即ad平分∠cae

6、∠2=113°.∠3=67°.

∵ a∥b(已知).

∴ ∠2=∠1=113°(兩直線平行,內(nèi)錯角相等). ∵ c∥d(已知).

∴ ∠4=∠2=113°(兩直線平行,同位角相等). ∵ ∠3+∠4=180°(鄰補(bǔ)角定義),

∴ ∠3=67°(等式性質(zhì)).

7、∠d=∠c=45°,∠b=135°

第三篇:平行線的判定證明題

平行線的判定證明題

1)兩條平行線被第三條直線所截,同位角相等;(2)兩條平行線被第三條直線所截,內(nèi)錯角相等;(3)兩條平行線被第三條直線所截,同旁內(nèi)角互補(bǔ)。(1)兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行;(2)兩條直線被第三條直線所截,如果內(nèi)錯角相等,那么這兩條直線平行;(3)兩條直線被第三條直線所截,如果同旁內(nèi)角相等,那么這兩條直線平行。按這個判定,絕對沒錯。這兩種的第一條都沒有辦法判定,而后兩條就完全可以按照第一條來判定,最后的結(jié)果一定是對的。

2

平行線的性質(zhì):(1)兩條平行線被第三條直線所截,同位角相等;(2)兩條平行線被第三條直線所截,內(nèi)錯角相等;(3)兩條平行線被第三條直線所截,同旁內(nèi)角互補(bǔ)。平行線的判定定理:(1)兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行;(2)兩條直線被第三條直線所截,如果內(nèi)錯角相等,那么這兩條直線平行;(3)兩條直線被第三條直線所截,如果同旁內(nèi)角相等,那么這兩條直線平行。

平行線的性質(zhì):在同一平面內(nèi)永不相交的兩條直線叫做平行線。平行線的判定定理:(1)兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行;(2)兩條直線被第三條直線所截,如果內(nèi)錯角相等,那么這兩條直線平行;(3)兩條直線被第三條直線所截,如果同旁內(nèi)角相等,那么這兩條直線平行。

3

光學(xué)原理。

延長ge角cd于q

因為∠2=∠3,所以ab∥cd

由ab∥cd可得∠1=∠gqd

又∠1=∠4

所以∠4=∠gqd

所以gq∥fh即:ge∥fh

因為∠2=∠3

所以ab∥cd

所以角cfe=角feb

所以大角hfe=大角feg

所以hf∥ge

4

)要證明ab∥gd,只要證明∠1=∠bad即可,根據(jù)∠1=∠2,只要再證明∠2=∠bad即可證得;

(2)根據(jù)ab∥cd,∠1:∠2:∠3=1:2:3即可求得三個角的度數(shù),再根據(jù)∠eba與∠abd互補(bǔ),可求得∠eba的度數(shù),即可作出判斷.解答:解:(1)證明:∵ad⊥bc,ef⊥bc(已知)

∴∠efb=∠adb=90°(垂直的定義)

∴ef∥ad(同位角相等,兩直線平行)(2分)

∴∠2=∠bad(兩直線平行,同位角相等)(3分)

∵∠1=∠2,(已知)

∴∠1=∠bad(等量代換)

∴ab∥dg.(內(nèi)錯角相等,兩直線平行)(4分)

(2)判斷:ba平分∠ebf(1分)

證明:∵∠1:∠2:∠3=1:2:3

∴可設(shè)∠1=k,∠2=2k,∠3=3k(k>0)

∵ab∥cd

∴∠2+∠3=180°(2分)

∴2k+3k=180°

∴k=36°

∴∠1=36°,∠2=72°(4分)

∴∠abe=72°(平角定義)

∴∠2=∠abe

∴ba平分∠ebf(角平分線定義).(5分)

第四篇:平行線證明題

平行線證明題

直線ab和直線cd平行

因為,∠aef=∠efd.所以ab平行于cd

內(nèi)錯角相等,兩直線平行

em與fn平行因為em是∠aef的平分線,fn是∠efd的平分線,所以角mef=1/2角aef,角efn=1/2角efd

因為,∠aef=∠efd,所以角mef=角efn

所以em與fn平行,內(nèi)錯角相等,兩直線平行

2

第五章相交線與平行線試卷

一、填空題:

1、平面內(nèi)兩條直線的位置關(guān)系可能是或。

2、“兩直線平行,同位角相等”的題設(shè)是,結(jié)論是。

3、∠a和∠b是鄰補(bǔ)角,且∠a比∠b大200,則∠a=度,∠b=度。

4、如圖1,o是直線ab上的點(diǎn),od是∠cob的平分線,若∠aoc=400,則∠bod=

0。

5、如圖2,如果ab‖cd,那么∠b+∠f+∠e+∠d=0。

6、如圖3,圖中abcd-是一個正方體,則圖中與bc所在的直線平行的直線有條。

7、如圖4,直線‖,且∠1=280,∠2=500,則∠acb=0。

8、如圖5,若a是直線de上一點(diǎn),且bc‖de,則∠2+∠4+∠5=0。

9、在同一平面內(nèi),如果直線‖,‖,則與的位置關(guān)系是。

10、如圖6,∠abc=1200,∠bcd=850,ab‖ed,則∠cde0。

二、選擇題:各小題只有唯一一個正確答案,請將正確答案的代號填在題后的括號內(nèi)

11、已知:如圖7,∠1=600,∠2=1200,∠3=700,則∠4的度數(shù)是()

a、700b、600c、500d、400

12、已知:如圖8,下列條件中,不能判斷直線‖的是()

a、∠1=∠3b、∠2=∠3c、∠4=∠5d、∠2+∠4=1800

13、如圖9,已知ab‖cd,hi‖fg,ef⊥cd于f,∠1=400,那么∠ehi=()

a、400b、450c、500d、550

14、一個角的兩邊分別平行于另一個角的兩邊,則這兩個角()

a、相等b、相等或互補(bǔ)c、互補(bǔ)d、不能確定

15、下列語句中,是假命題的個數(shù)是()

①過點(diǎn)p作直線bc的垂線;②延長線段mn;③直線沒有延長線;④射線有延長線。

a、0個b、1個c、2個d、3個

16、兩條直線被第三條直線所截,則()

a、同位角相等b、內(nèi)錯角相等

c、同旁內(nèi)角互補(bǔ)d、以上結(jié)論都不對

17、如圖10,ab‖cd,則()

a、∠bad+∠bcd=1800b、∠abc+∠bad=1800

c、∠abc+∠bcd=1800d、∠abc+∠adc=1800

18、如圖11,∠abc=900,bd⊥ac,下列關(guān)系式中不一定成立的是()

a、ab>adb、ac>bcc、bd+cd>bcd、cd>bd

19、如圖12,下面給出四個判斷:①∠1和∠3是同位角;②∠1和∠5是同位角;③∠1和∠2是同旁內(nèi)角;④∠1和∠4是內(nèi)錯角。其中錯誤的是()

a、①②b、①②③c、②④d、③④

三、完成下面的證明推理過程,并在括號里填上根據(jù)

21、已知,如圖13,cd平分∠acb,de‖bc,∠aed=820。求∠edc的度數(shù)。

證明:∵de‖bc(已知)

∴∠acb=∠aed()

∠edc=∠dcb()

又∵cd平分∠acb(已知)

∴∠dcb=∠acb()

又∵∠aed=820(已知)

∴∠acb=820()

∴∠dcb==410()

∴∠edc=410()

22、如圖14,已知aob為直線,oc平分∠bod,eo⊥oc于o。試說明:oe平分∠aod。

解:∵aob是直線(已知)

∴∠boc+∠cod+∠doe+∠eoa=1800()

又∵eo⊥oc于o(已知)

∴∠cod+∠doe=900()

∴∠boc+∠eoa=900()

又∵oc平分∠bod(已知)

∴∠boc=∠cod()

∴∠doe=∠eoa()

∴oe平分∠aod()

四、解答題:

23、已知,如圖16,ab‖cd,gh是相交于直線ab、ef的直線,且∠1+∠2=1800。試說明:cd‖ef。

24、如圖18,已知ab‖cd,∠a=600,∠ecd=1200。求∠eca的度數(shù)。

五、探索題(第27、28題各4分,本大題共8分)

25、如圖19,已知ab‖de,∠abc=800,∠cde=1400。請你探索出一種(只須一種)添加輔助線求出∠bcd度數(shù)的方法,并求出∠bcd的度數(shù)。

26、閱讀下面的材料,并完成后面提出的問題。

(1)已知,如圖20,ab‖df,請你探究一下∠bcf與∠b、∠f的數(shù)量有何關(guān)系,并說明理由。

(2)在圖20中,當(dāng)點(diǎn)c向左移動到圖21所示的位置時,∠bcf與∠b、∠f又有怎樣的數(shù)量關(guān)系呢?

(3)在圖20中,當(dāng)點(diǎn)c向上移動到圖22所示的位置時,∠bcf與∠b、∠f又有怎樣的數(shù)量關(guān)系呢?

(4)在圖20中,當(dāng)點(diǎn)c向下移動到圖23所示的位置時,∠bcf與∠b、∠f又有怎樣的數(shù)量關(guān)系呢?

分析與探究的過程如下:

在圖20中,過點(diǎn)c作ce‖ab

∵ce‖ab(作圖)

ab‖df(已知)

∴ab‖ec‖df(平行于同一條直線的兩條直線平行)

∴∠b+∠1=∠f+∠2=1800(兩直線平行,同旁內(nèi)角互補(bǔ))

∴∠b+∠1+∠2+∠f=3600(等式的性質(zhì))

即∠bcf+∠b+∠f=3600

在圖21中,過點(diǎn)c作ce‖ab

∵ce‖ab(作圖)

ab‖df(已知)

∴ab‖ec‖df(平行于同一條直線的兩條直線平行)

∴∠b=∠1,∠f=∠2(兩直線平行,內(nèi)錯角相等)

∴∠b+∠f=∠1+∠2(等式的性質(zhì))

即∠bcf=∠b+∠f

直接寫出第(3)小題的結(jié)論:(不須證明)。

由上面的探索過程可知,點(diǎn)c的位置不同,∠bcf與∠(更多內(nèi)容請訪問好范 文網(wǎng)m.taixiivf.comf∥ab

∴∠aem=∠a

又∵ab∥cd

∴ef∥cd

∴∠mfc=∠c

又∠aec=∠aem+∠mec

∴∠aec=∠a+∠c

證法二:延長ae交ab于f

∵ab∥cd

∴∠a=∠afc

又∠aec=∠c+∠afc

∴∠aec=∠a+∠c

證法三:延長ce交ab于f

(略,與證法二類似)

證法四:連接ac

∵ab∥cd

∴∠bac+∠acd=180°

即∠bae+∠eac+∠ace+∠ecd=180°

又∠eac+∠ace+∠aec=180°

∴∠aec=∠bae+∠ecd

※通過一題多證,加深了學(xué)生對平行線的特征的理解和運(yùn)用。

例題2(一題多變)已知ab∥cd,

如果改變e點(diǎn)與ab、cd的位置關(guān)系,且∠e、∠a、∠c依然存在,有哪幾種情況?請畫出圖形,并證明

圖1中結(jié)論,∠aec+∠a+∠c=360°

證:過點(diǎn)e作ef∥ab

∵ab∥cd

∴ef∥cd

∴∠a+∠aef=180°,∠fec+∠c=180°

∴∠a+∠aef+∠fec+∠c=360°

即∠aec+∠a+∠c=360°

圖2中結(jié)論,∠aec=∠c-∠a

證:過點(diǎn)e作ef∥ab

∵ab∥cd

∴ef∥cd

∴∠fea+∠a=180°

∠fec+∠c=180°

∴∠fea-∠fec=∠c-∠a

即∠aec=∠c-∠a

圖3中結(jié)論,∠aec=∠a-∠c

證:過點(diǎn)e作ef∥ab

∵ab∥cd

∴ef∥cd

∴∠fea+∠a=180°

∠fec+∠c=180°

∴∠fec-∠fea=∠a-∠c

即∠aec=∠a-∠c

例題3(一題多變)將例1和例2的條件和結(jié)論對換,以上結(jié)論都成立重點(diǎn)練習(xí)平行線的性質(zhì)和判斷(證明過程略)

圖形條件結(jié)論∠aec=∠a+∠cab∥cd∠aec+∠a+∠c=360°ab∥cd∠aec=∠c-∠aab∥cd∠aec=∠a-∠cab∥cd拓展延伸

觀察以下二個圖形,這些拐角之間的關(guān)系有什么規(guī)律?

提示:分別過e1,e2,e3……en作ab的平行線即可證得

※結(jié)論:向左凸出的角的和=向左凸出的角的和

來源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問題,請聯(lián)系我們及時刪除。


初一平行線證明題(精選多篇)》由互聯(lián)網(wǎng)用戶整理提供,轉(zhuǎn)載分享請保留原作者信息,謝謝!
鏈接地址:http://m.taixiivf.com/gongwen/381896.html
相關(guān)文章