第一篇:函數(shù)極限的證明
函數(shù)極限的證明
(一)時(shí)函數(shù)的極限:
以時(shí)和為例引入.
介紹符號:的意義,的直觀意義.
定義(和.)
幾何意義介紹鄰域其中為充分大的正數(shù).然后用這些鄰域語言介紹幾何意義.
例1驗(yàn)證例2驗(yàn)證例3驗(yàn)證證……
(二)時(shí)函數(shù)的極限:
由考慮時(shí)的極限引入.
定義函數(shù)極限的“”定義.
幾何意義.
用定義驗(yàn)證函數(shù)極限的基本思路.
例4驗(yàn)證例5驗(yàn)證例6驗(yàn)證證由=
為使需有為使需有于是,倘限制,就有
例7驗(yàn)證例8驗(yàn)證(類似有(三)單側(cè)極限:
1.定義:單側(cè)極限的定義及記法.
幾何意義:介紹半鄰域然后介紹等的幾何意義.
例9驗(yàn)證證考慮使的2.單側(cè)極限與雙側(cè)極限的關(guān)系:
th類似有:例10證明:極限不存在.
例11設(shè)函數(shù)在點(diǎn)的某鄰域內(nèi)單調(diào).若存在,則有
= 2函數(shù)極限的性質(zhì)(3學(xué)時(shí))
教學(xué)目的:使學(xué)生掌握函數(shù)極限的基本性質(zhì)。
教學(xué)要求:掌握函數(shù)極限的基本性質(zhì):唯一性、局部保號性、不等式性質(zhì)以及有理運(yùn)算性等。
教學(xué)重點(diǎn):函數(shù)極限的性質(zhì)及其計(jì)算。
教學(xué)難點(diǎn):函數(shù)極限性質(zhì)證明及其應(yīng)用。
教學(xué)方法:講練結(jié)合。
一、組織教學(xué):
我們引進(jìn)了六種極限:,.以下以極限為例討論性質(zhì).均給出證明或簡證.
二、講授新課:
(一)函數(shù)極限的性質(zhì):以下性質(zhì)均以定理形式給出.
1.唯一性:
2.局部有界性:
3.局部保號性:
4.單調(diào)性(不等式性質(zhì)):
th4若和都存在,且存在點(diǎn)的空心鄰域,使,都有證設(shè)=(現(xiàn)證對有)
註:若在th4的條件中,改“”為“”,未必就有以舉例說明.
5.迫斂性:
6.四則運(yùn)算性質(zhì):(只證“+”和“”)
(二)利用極限性質(zhì)求極限:已證明過以下幾個(gè)極限:
(注意前四個(gè)極限中極限就是函數(shù)值)
這些極限可作為公式用.在計(jì)算一些簡單極限時(shí),有五組基本極限作為公式用,我們將陸續(xù)證明這些公式.
利用極限性質(zhì),特別是運(yùn)算性質(zhì)求極限的原理是:通過有關(guān)性質(zhì),把所求極限化為基本極限,代入基本極限的值,即計(jì)算得所求極限.
例1(利用極限和)
例2例3註:關(guān)于的有理分式當(dāng)時(shí)的極限.
例4
例5例6例7
第二篇:函數(shù)極限證明
函數(shù)極限證明
記g(x)=lim^(1/n),n趨于正無窮;
下面證明limg(x)=max{a1,...am},x趨于正無窮。把max{a1,...am}記作a。
不妨設(shè)f1(x)趨于a;作b>a>=0,m>1;
那么存在n1,當(dāng)x>n1,有a/m<=f1(x)注意到f2的極限小于等于a,那么存在n2,當(dāng)x>n2時(shí),0<=f2(x)同理,存在ni,當(dāng)x>ni時(shí),0<=fi(x)取n=max{n1,n2...nm};
那么當(dāng)x>n,有
(a/m)^n<=f1(x)^n<=f1(x)^n+...fm(x)^n所以a/m<=^(1/n)
第三篇:二元函數(shù)極限證明
二元函數(shù)極限證明
設(shè)p=f(x,y),p0=(a,b),當(dāng)p→p0時(shí)f(x,y)的極限是x,y同時(shí)趨向于a,b時(shí)所得到的稱為二重極限。
此外,我們還要討論x,y先后相繼地趨于a,b時(shí)的極限,稱為二次極限。
我們必須(轉(zhuǎn)載需注明來源:m.taixiivf.com=max{|a-1|,|a+1|},則有:存在δ>0,當(dāng)任意x屬于x0的某個(gè)鄰域u(x0;δ)時(shí),有|f(x)|
證畢
3首先,我的方法不正規(guī),其次,正確不正確有待考察。
1,y以y=x^2-x的路徑趨于0limitedsin(x+y)/x^2=limitedsinx^2/x^2=1而y=x的路徑趨于0結(jié)果是無窮大。
2,3可以用類似的方法,貌似同濟(jì)書上是這么說的,二元函數(shù)在該點(diǎn)極限存在,是p(x,y)以任何方式趨向于該點(diǎn)。
4
f(x,y)={(x^2+y^2)/(|x|+|y|)}*sin(1/x)
顯然有y->0,f->(x^2/|x|)*sin(1/x)存在
當(dāng)x->0,f->(y^2/|y|)*sin(1/x),sin(1/x)再0處是波動(dòng)的所以不存在
而當(dāng)x->0,y->0時(shí)
由|sin(1/x)|<=1得|f|<=(x^2+y^2)/(|x|+|y|)
而x^2+y^2<=x^2+y^2+2*|x||y|=(|x|+|y|)^2
所以|f|<=|x|+|y|
所以顯然當(dāng)x->0,y->0時(shí),f的極限就為0
這個(gè)就是你說的,唯一不一樣就是非正常極限是不存在而不是你說的
正無窮或負(fù)無窮或無窮,我想這個(gè)就可以了
就我這個(gè)我就線了好久了
5
(一)時(shí)函數(shù)的極限:
以時(shí)和為例引入.
介紹符號:的意義,的直觀意義.
定義(和.)
幾何意義介紹鄰域其中為充分大的正數(shù).然后用這些鄰域語言介紹幾何意義.
例1驗(yàn)證例2驗(yàn)證例3驗(yàn)證證……
(二)時(shí)函數(shù)的極限:
由考慮時(shí)的極限引入.
定義函數(shù)極限的“”定義.
幾何意義.
用定義驗(yàn)證函數(shù)極限的基本思路.
例4驗(yàn)證例5驗(yàn)證例6驗(yàn)證證由=
為使需有為使需有于是,倘限制,就有
例7驗(yàn)證例8驗(yàn)證(類似有(三)單側(cè)極限:
1.定義:單側(cè)極限的定義及記法.
幾何意義:介紹半鄰域然后介紹等的幾何意義.
例9驗(yàn)證證考慮使的2.單側(cè)極限與雙側(cè)極限的關(guān)系:
th類似有:例10證明:極限不存在.
例11設(shè)函數(shù)在點(diǎn)的某鄰域內(nèi)單調(diào).若存在,則有
= 2函數(shù)極限的性質(zhì)(3學(xué)時(shí))
教學(xué)目的:使學(xué)生掌握函數(shù)極限的基本性質(zhì)。
教學(xué)要求:掌握函數(shù)極限的基本性質(zhì):唯一性、局部保號性、不等式性質(zhì)以及有理運(yùn)算性等。
教學(xué)重點(diǎn):函數(shù)極限的性質(zhì)及其計(jì)算。
教學(xué)難點(diǎn):函數(shù)極限性質(zhì)證明及其應(yīng)用。
教學(xué)方法:講練結(jié)合。
一、組織教學(xué):
我們引進(jìn)了六種極限:,.以下以極限為例討論性質(zhì).均給出證明或簡證.
二、講授新課:
(一)函數(shù)極限的性質(zhì):以下性質(zhì)均以定理形式給出.
1.唯一性:
2.局部有界性:
3.局部保號性:
4.單調(diào)性(不等式性質(zhì)):
th4若和都存在,且存在點(diǎn)的空心鄰域,使,都有證設(shè)=(現(xiàn)證對有)
註:若在th4的條件中,改“”為“”,未必就有以舉例說明.
5.迫斂性:
6.四則運(yùn)算性質(zhì):(只證“+”和“”)
(二)利用極限性質(zhì)求極限:已證明過以下幾個(gè)極限:
(注意前四個(gè)極限中極限就是函數(shù)值)
這些極限可作為公式用.在計(jì)算一些簡單極限時(shí),有五組基本極限作為公式用,我們將陸續(xù)證明這些公式.
利用極限性質(zhì),特別是運(yùn)算性質(zhì)求極限的原理是:通過有關(guān)性質(zhì),把所求極限化為基本極限,代入基本極限的值,即計(jì)算得所求極限.
例1(利用極限和)
例2例3註:關(guān)于的有理分式當(dāng)時(shí)的極限.
例4
例5例6例7
第四篇:函數(shù)極限的性質(zhì)證明
函數(shù)極限的性質(zhì)證明
x1=2,xn+1=2+1/xn,證明xn的極限存在,并求該極限
求極限我會(huì)
|xn+1-a|<|xn-a|/a
以此類推,改變數(shù)列下標(biāo)可得|xn-a|<|xn-1-a|/a;
|xn-1-a|<|xn-2-a|/a;
……
|x2-a|<|x1-a|/a;
向上迭代,可以得到|xn+1-a|<|xn-a|/(a^n)
2
只要證明{x(n)}單調(diào)增加有上界就可以了。
用數(shù)學(xué)歸納法:
①證明{x(n)}單調(diào)增加。
x(2)=√=√5>x(1);
設(shè)x(k+1)>x(k),則
x(k+2)-x(k+1))=√-√(分子有理化)
=/【√+√】>0。
②證明{x(n)}有上界。
x(1)=1<4,
設(shè)x(k)<4,則
x(k+1)=√<√(2+3*4)<4。
3
當(dāng)0
當(dāng)0
構(gòu)造函數(shù)f(x)=x*a^x(0
令t=1/a,則:t>1、a=1/t
且,f(x)=x*(1/t)^x=x/t^x(t>1)
則:
lim(x→+∞)f(x)=lim(x→+∞)x/t^x
=lim(x→+∞)(分子分母分別求導(dǎo))
=lim(x→+∞)1/(t^x*lnt)
=1/(+∞)
=0
所以,對于數(shù)列n*a^n,其極限為0
4
用數(shù)列極限的定義證明
3.根據(jù)數(shù)列極限的定義證明:
(1)lim=0
n→∞
(2)lim=3/2
n→∞
(3)lim=0
n→∞
(4)lim0.999…9=1
n→∞n個(gè)9
5幾道數(shù)列極限的證明題,幫個(gè)忙。。。lim就省略不打了。。。
n/(n^2+1)=0
√(n^2+4)/n=1
sin(1/n)=0
實(shí)質(zhì)就是計(jì)算題,只不過題目把答案告訴你了,你把過程寫出來就好了
第一題,分子分母都除以n,把n等于無窮帶進(jìn)去就行
第二題,利用海涅定理,把n換成x,原題由數(shù)列極限變成函數(shù)極限,用羅比達(dá)法則(不知樓主學(xué)了沒,沒學(xué)的話以后會(huì)學(xué)的)
第三題,n趨于無窮時(shí)1/n=0,sin(1/n)=0
不知樓主覺得我的解法對不對呀limn/(n^2+1)=lim(1/n)/(1+1/n^2)=lim(1/n)/(1+lim(1+n^2)=0/1=0
lim√(n^2+4)/n=lim√(1+4/n^2)=√1+lim(4/n^2)=√1+4lim(1/n^2)=1
limsin(1/n)=lim=lim(1/n)*lim/(1/n)=0*1=0
第五篇:函數(shù)極限的定義證明
習(xí)題1?3
1. 根據(jù)函數(shù)極限的定義證明:
(1)lim(3x?1)?8;x?3
(2)lim(5x?2)?12;x?2
x2?4??4;(3)limx??2x?2
1?4x3
(4)lim?2.
x??2x?12
1證明 (1)分析 |(3x?1)?8|?|3x?9|?3|x?3|, 要使|(3x?1)?8|?? , 只須|x?3|??.3
1證明 因?yàn)?? ?0, ????, 當(dāng)0?|x?3|??時(shí), 有|(3x?1)?8|?? , 所以lim(3x?1)?8.x?33
1(2)分析 |(5x?2)?12|?|5x?10|?5|x?2|, 要使|(5x?2)?12|?? , 只須|x?2|??.5
1證明 因?yàn)?? ?0, ????, 當(dāng)0?|x?2|??時(shí), 有|(5x?2)?12|?? , 所以lim(5x?2)?12.x?25
(3)分析
|x?(?2)|??.x2?4x2?4x?4x2?4?(?4)??|x?2|?|x?(?2)|, 要使?(?4)??, 只須x?2x?2x?2
x2?4x2?4?(?4)??, 所以lim??4.證明 因?yàn)?? ?0, ????, 當(dāng)0?|x?(?2)|??時(shí), 有x??2x?2x?2
(4)分析 1?4x3111?4x31?2??, 只須|x?(?)|??.?2?|1?2x?2|?2|x?(?)|, 要使2x?12x?1222
1?4x3111?4x3
?2??, 所以lim證明 因?yàn)?? ?0, ????, 當(dāng)0?|x?(?)|??時(shí), 有?2.12x?12x?122x??2. 根據(jù)函數(shù)極限的定義證明:
(1)lim1?x3
2x3
sinxx???1;2(2)limx???x?0.
證明 (1)分析
|x|?1
1?x32x311?x3?x3??22x3?12|x|3, 要使1?x32x3?11??, 只須??, 即322|x|2?.
證明 因?yàn)?? ?0, ?x?(2)分析
sinxx?0?
12?
, 當(dāng)|x|?x時(shí), 有1x
1?x32x311?x31???, 所以lim?.
x??2x322
1x
??, 即x?
sinxx
|sinx|x
?, 要使
sinx
證明 因?yàn)???0, ?x?
?2
, 當(dāng)x?x時(shí), 有
xsinxx
?0??, 只須
?
.
?0??, 所以lim
x???
?0.
3. 當(dāng)x?2時(shí),y?x2?4. 問?等于多少, 使當(dāng)|x?2|<?時(shí), |y?4|<0. 001?
解 由于x?2, |x?2|?0, 不妨設(shè)|x?2|?1, 即1?x?3. 要使|x2?4|?|x?2||x?2|?5|x?2|?0. 001, 只要
|x?2|?
0.001
?0.0002, 取??0. 0002, 則當(dāng)0?|x?2|??時(shí), 就有|x2?4|?0. 001.5
x2?1x?3
4. 當(dāng)x??時(shí), y?
x2?1x2?3
?1, 問x等于多少, 使當(dāng)|x|>x時(shí), |y?1|<0.01?
解 要使?1?
4x2?3
?0.01, 只|x|?
?3?397, x?.0.01
5. 證明函數(shù)f(x)?|x| 當(dāng)x?0時(shí)極限為零.
x|x|
6. 求f(x)?, ?(x)?當(dāng)x?0時(shí)的左﹑右極限, 并說明它們在x?0時(shí)的極限是否存在.
xx
證明 因?yàn)?/p>
x
limf(x)?lim?lim1?1,
x?0?x?0?xx?0?x
limf(x)?lim?lim1?1,
x?0?x?0?xx?0?limf(x)?limf(x),??
x?0
x?0
所以極限limf(x)存在.
x?0
因?yàn)?/p>
lim?(x)?lim??
x?0
x?0
|x|?x
?lim??1,?x?0xx|x|x?lim?1,xx?0?x
lim?(x)?lim??
x?0
x?0
lim?(x)?lim?(x),??
x?0
x?0
所以極限lim?(x)不存在.
x?0
7. 證明: 若x???及x???時(shí), 函數(shù)f(x)的極限都存在且都等于a, 則limf(x)?a.
x??
證明 因?yàn)閘imf(x)?a, limf(x)?a, 所以??>0,
x???
x???
?x1?0, 使當(dāng)x??x1時(shí), 有|f(x)?a|?? ;?x2?0, 使當(dāng)x?x2時(shí), 有|f(x)?a|?? .
取x?max{x1, x2}, 則當(dāng)|x|?x時(shí), 有|f(x)?a|?? , 即limf(x)?a.
x??
8. 根據(jù)極限的定義證明: 函數(shù)f(x)當(dāng)x?x0 時(shí)極限存在的充分必要條件是左極限、右極限各自存在并且相等.
證明 先證明必要性. 設(shè)f(x)?a(x?x0), 則??>0, ???0, 使當(dāng)0<|x?x0|<? 時(shí), 有
|f(x)?a|<? .
因此當(dāng)x0??<x<x0和x0<x<x0?? 時(shí)都有
|f(x)?a|<? .
這說明f(x)當(dāng)x?x0時(shí)左右極限都存在并且都等于a .再證明充分性. 設(shè)f(x0?0)?f(x0?0)?a, 則??>0,??1>0, 使當(dāng)x0??1<x<x0時(shí), 有| f(x)?a<? ;??2>0, 使當(dāng)x0<x<x0+?2時(shí), 有| f(x)?a|<? .
取??min{?1, ?2}, 則當(dāng)0<|x?x0|<? 時(shí), 有x0??1<x<x0及x0<x<x0+?2 , 從而有
| f(x)?a|<? ,
即f(x)?a(x?x0).
9. 試給出x??時(shí)函數(shù)極限的局部有界性的定理, 并加以證明.
解 x??時(shí)函數(shù)極限的局部有界性的定理? 如果f(x)當(dāng)x??時(shí)的極限存在? 則存在x?0及m?0? 使當(dāng)|x|?x時(shí)? |f(x)|?m?
證明 設(shè)f(x)?a(x??)? 則對于? ?1? ?x?0? 當(dāng)|x|?x時(shí)? 有|f(x)?a|?? ?1? 所以|f(x)|?|f(x)?a?a|?|f(x)?a|?|a|?1?|a|?
這就是說存在x?0及m?0? 使當(dāng)|x|?x時(shí)? |f(x)|?m? 其中m?1?|a|?
來源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問題,請聯(lián)系我們及時(shí)刪除。