余弦定理及其證明
1.三角形的正弦定理證明:
步驟1.
在銳角△abc中,設(shè)三邊為a,b,c。作ch⊥ab垂足為點(diǎn)h
ch=a·sinb
ch=b·sina
∴a·sinb=b·sina
得到
a/sina=b/sinb
同理,在△abc中,
b/sinb=c/sinc
步驟2.
證明a/sina=b/sinb=c/sinc=2r:
如圖,任意三角形abc,作abc的外接圓o.
作直徑bd交⊙o于d.
連接da.
因?yàn)橹睆剿鶎?duì)的圓周角是直角,所以∠dab=90度
因?yàn)橥∷鶎?duì)的圓周角相等,所以∠d等于∠c.
所以c/sinc=c/sind=bd=2r
a/sina=bc/sind=bd=2r
類似可證其余兩個(gè)等式。
2.三角形的余弦定理證明:
平面幾何證法:
在任意△abc中
做ad⊥bc.
∠c所對(duì)的邊為c,∠b所對(duì)的邊為b,∠a所對(duì)的邊為a
則有bd=cosb*c,ad=sinb*c,dc=bc-bd=a-cosb*c
根據(jù)勾股定理可得:
ac^2=ad^2+dc^2
b^2=(sinb*c)^2+(a-cosb*c)^2
b^2=sin^2b*c^2+a^2+cos^2b*c^2-2ac*cosb
b^2=(sin^2b+cos^2b)*c^2-2ac*cosb+a^2
b^2=c^2+a^2-2ac*cosb
cosb=(c^2+a^2-b^2)/2ac
3
在△abc中,ab=c、bc=a、ca=b
則c^2=a^2+b^2-2ab*cosc
a^2=b^2+c^2-2bc*cosa
b^2=a^2+c^2-2ac*cosb
下面在銳角△中證明第一個(gè)等式,在鈍角△中證明以此類推。
過(guò)a作ad⊥bc于d,則bd+cd=a
由勾股定理得:
c^2=(ad)^2+(bd)^2,(ad)^2=b^2-(cd)^2
所以c^2=(ad)^2-(cd)^2+b^2
=(a-cd)^2-(cd)^2+b^2
=a^2-2a*cd+(cd)^2-(cd)^2+b^2
=a^2+b^2-2a*cd
因?yàn)閏osc=cd/b
所以cd=b*cosc
所以c^2=a^2+b^2-2ab*cosc
題目中^2表示平方。
2
談?wù)、余弦定理的多種證法
聊城二中魏清泉
正、余弦定理是解三角形強(qiáng)有力的工具,關(guān)于這兩個(gè)定理有好幾種不同的證明方法.人教a版教材《數(shù)學(xué)》(必修5)是用向量的數(shù)量積給出證明的,如是在證明正弦定理時(shí)用到作輔助單位向量并對(duì)向量的等式作同一向量的數(shù)量積,這種構(gòu)思方法過(guò)于獨(dú)特,不易被初學(xué)者接受.本文試圖通過(guò)運(yùn)用多種方法證明正、余弦定理從而進(jìn)一步理解正、余弦定理,進(jìn)一步體會(huì)向量的巧妙應(yīng)用和數(shù)學(xué)中“數(shù)”與“形”的完美結(jié)合.
定理:在△abc中,ab=c,ac=b,bc=a,則
(1)(正弦定理)==;
(2)(余弦定理)
c2=a2+b2-2abcosc,
b2=a2+c2-2accosb,
a2=b2+c2-2bccosa.
一、正弦定理的證明
證法一:如圖1,設(shè)ad、be、cf分別是△abc的三條高。則有
ad=b•sin∠bca,
be=c•sin∠cab,
cf=a•sin∠abc。
所以s△abc=a•b•csin∠bca
=b•c•sin∠cab
=c•a•sin∠abc.
證法二:如圖1,設(shè)ad、be、cf分別是△abc的3條高。則有
ad=b•sin∠bca=c•sin∠abc,
be=a•sin∠bca=c•sin∠cab。
證法三:如圖2,設(shè)cd=2r是△abc的外接圓
的直徑,則∠dac=90°,∠abc=∠adc。
證法四:如圖3,設(shè)單位向量j與向量ac垂直。
因?yàn)閍b=ac+cb,
所以j•ab=j•(ac+cb)=j•ac+j•cb.
因?yàn)閖•ac=0,
j•cb=|j||cb|cos(90°-∠c)=a•sinc,
j•ab=|j||ab|cos(90°-∠a)=c•sina.
二、余弦定理的證明
法一:在△abc中,已知,求c。
過(guò)a作,
在rt中,,
法二:
,即:
法三:
先證明如下等式:
⑴
證明:
故⑴式成立,再由正弦定理變形,得
結(jié)合⑴、有
即.
同理可證
.
三、正余弦定理的統(tǒng)一證明
法一:證明:建立如下圖所示的直角坐標(biāo)系,則a=(0,0)、b=(c,0),又由任意角三角函數(shù)的定義可得:c=(bcosa,bsina),以ab、bc為鄰邊作平行四邊形abcc′,則∠bac′=π-∠b,
∴c′(acos(π-b),asin(π-b))=c′(-acosb,asinb).
根據(jù)向量的運(yùn)算:
=(-acosb,asinb),
=-=(bcosa-c,bsina),
(1)由=:得
asinb=bsina,即
=.
同理可得:=.
∴==.
(2)由=(b-cosa-c)2+(bsina)2=b2+c2-2bccosa,
又||=a,
∴a2=b2+c2-2bccosa.
同理:
c2=a2+b2-2abcosc;
b2=a2+c2-2accosb.
法二:如圖5,
,設(shè)軸、軸方向上的單位向量分別為、,將上式的兩邊分別與、作數(shù)量積,可知
,
即
將(1)式改寫(xiě)為
化簡(jiǎn)得b2-a2-c2=-2accosb.
即b2=a2+c2-2accosb.(4)
第二篇:正、余弦定理及其應(yīng)用龍?jiān)雌诳W(wǎng) http://.cn
正、余弦定理及其應(yīng)用
作者:夏志輝
來(lái)源:《數(shù)學(xué)金刊·高考版》201*年第10期
正、余弦定理及其應(yīng)用是高中數(shù)學(xué)的一個(gè)重要內(nèi)容,是高考必考知識(shí)點(diǎn)之一,也是解三角形的重要工具,常常會(huì)結(jié)合三角函數(shù)或平面向量的知識(shí)來(lái)考查其運(yùn)用.
重點(diǎn)難點(diǎn)
在高考中,本部分知識(shí)所考查的有關(guān)試題大多為容易題. 在客觀題中,突出考查正、余弦定理及其推論所涉及的運(yùn)算;在解答題中,通常聯(lián)系三角恒等變形、三角形內(nèi)角和定理、三角形面積公式等知識(shí)進(jìn)行綜合考查,常見(jiàn)的有證明、判斷、求值(求解斜三角形中的基本元素:角、面積等)及解決實(shí)際問(wèn)題等題型.
重點(diǎn):①正確理解正、余弦定理的概念,了解正、余弦定理之間的內(nèi)在聯(lián)系,掌握公式的一些常用變形;②判斷三角形的形狀;③解斜三角形;④運(yùn)用正、余弦定理解決一些實(shí)際問(wèn)題以及與其他知識(shí)相互滲透的綜合問(wèn)題.
難點(diǎn):①解三角形時(shí)解的情況的討論;②正、余弦定理與三角恒等變換等知識(shí)相互聯(lián)系的綜合問(wèn)題.
第三篇:余弦定理證明過(guò)程在△abc中,設(shè)bc=a,ac=b,ab=c,試根據(jù)b,c,a來(lái)表示a。 分析:由于初中平面幾何所接觸的是解直角三角形問(wèn)題,所以應(yīng)添加輔助線構(gòu)造直角三角形,在直角三角形內(nèi)通過(guò)邊角關(guān)系作進(jìn)一步的轉(zhuǎn)化工作,故作cd垂直于ab于d,那么在rt△bdc中,邊a可(收藏好 范 文,請(qǐng)便下次訪問(wèn)m.taixiivf.coma.mb,mc,應(yīng)用余弦定理證明:
mb=(1/2)
mc=(1/2)ma=√(c^2+(a/2)^2-ac*cosb)
=(1/2)√(4c^2+a^2-4ac*cosb)
由b^2=a^2+c^2-2ac*cosb
得,4ac*cosb=2a^2+2c^2-2b^2,代入上述ma表達(dá)式:
ma=(1/2)√
=(1/2)√(2b^2+2c^2-a^2)
同理可得:
mb=
mc=
4
ma=√(c^2+(a/2)^2-ac*cosb)
=(1/2)√(4c^2+a^2-4ac*cosb)
由b^2=a^2+c^2-2ac*cosb
得,4ac*cosb=2a^2+2c^2-2b^2,代入上述ma表達(dá)式:
ma=(1/2)√
=(1/2)√(2b^2+2c^2-a^2)
證畢。
第五篇:怎么證明余弦定理怎么證明余弦定理
證明余弦定理:
因?yàn)檫^(guò)c作cd垂直于ab,ad=bcosa;所以(c-bcosa)^2+(bsina)^2=a^2。
又因?yàn)閎^2-(bcosa)^2=(bsina)^2,所以(c-x)^2+b^2-(bcosa)^2=a^2,
所以c^2-2cbcosa+(bcosa)^2+b^2-(bcosa)^2=a^2,
所以c^2-2cbcosa+b^2=a^2,
所以c^2+b^2-a^2=2cbcosa,
所以cosa=(c^2+b^2-a^2)/2bc
同理cosb=(a^2+c^2-b^2)/2ac,cosc=(a^2+b^2-c^2)/2ab
2
在任意△abc中,作ad⊥bc.
∠c對(duì)邊為c,∠b對(duì)邊為b,∠a對(duì)邊為a-->
bd=cosb*c,ad=sinb*c,dc=bc-bd=a-cosb*c
勾股定理可知:
ac²=ad²+dc²
b²=(sinb*c)²+(a-cosb*c)²
b²=sin²b*c²+a²+cos²b*c²-2ac*cosb
b²=(sin²b+cos²b)*c²-2ac*cosb+a²
b²=c²+a²-2ac*cosb
所以,cosb=(c²+a²-b²)/2ac
2
如右圖,在abc中,三內(nèi)角a、b、c所對(duì)的邊分別是a、b、c.以a為原點(diǎn),ac所在的直線為x軸建立直角坐標(biāo)系,于是c點(diǎn)坐標(biāo)是(b,0),由三角函數(shù)的定義得b點(diǎn)坐標(biāo)是(ccosa,csina).∴cb=(ccosa-b,csina).現(xiàn)將cb平移到起點(diǎn)為原點(diǎn)a,則ad=cb.而|ad|=|cb|=a,∠dac=π-∠bca=π-c,根據(jù)三角函數(shù)的定義知d點(diǎn)坐標(biāo)是(acos(π-c),asin(π-c))即d點(diǎn)坐標(biāo)是(-acosc,asinc),∴ad=(-acosc,asinc)而ad=cb∴(-acosc,asinc)=(ccosa-b,csina)∴asinc=csina…………①-acosc=ccosa-b……②由①得asina=csinc,同理可證asina=bsinb,∴asina=bsinb=csinc.由②得acosc=b-ccosa,平方得:a2cos2c=b2-2bccosa+c2cos2a,即a2-a2sin2c=b2-2bccosa+c2-c2sin2a.而由①可得a2sin2c=c2sin2a∴a2=b2+c2-2bccosa.同理可證b2=a2+c2-2accosb,c2=a2+b2-2abcosc.到此正弦定理和余弦定理證明完畢。3△abc的三邊分別為a,b,c,邊bc,ca,ab上的中線分別為ma.mb,mc,應(yīng)用余弦定理證明:
mb=(1/2)
mc=(1/2)ma=√(c^2+(a/2)^2-ac*cosb)
=(1/2)√(4c^2+a^2-4ac*cosb)
由b^2=a^2+c^2-2ac*cosb
得,4ac*cosb=2a^2+2c^2-2b^2,代入上述ma表達(dá)式:
ma=(1/2)√
=(1/2)√(2b^2+2c^2-a^2)
同理可得:
mb=
mc=
4
ma=√(c^2+(a/2)^2-ac*cosb)
=(1/2)√(4c^2+a^2-4ac*cosb)
由b^2=a^2+c^2-2ac*cosb
得,4ac*cosb=2a^2+2c^2-2b^2,代入上述ma表達(dá)式:
ma=(1/2)√
=(1/2)√(2b^2+2c^2-a^2)
證畢。
公文素材庫(kù)向各位推薦其他精彩文章:余弦定理的多種證明
余弦定理證明過(guò)程
余弦定理的證明方法
余弦定理的三種證明
用復(fù)數(shù)證明余弦定理
來(lái)源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問(wèn)題,請(qǐng)聯(lián)系我們及時(shí)刪除。